YouLiXiya's picture
Upload 22 files
7dbe662
raw
history blame
35.2 kB
import functools
from dataclasses import dataclass
import PIL
from PIL.Image import Image
import numpy as np
from typing import Union, Tuple, List, Optional, Callable
from sklearn.decomposition import PCA
import supervision as sv
import torch
from torch import nn
import torch.nn.functional as F
import torchvision
import torchvision.transforms as T
from segment_anything.utils.transforms import ResizeLongestSide
from segment_anything.predictor import preprocess, postprocess_masks
from segment_anything import build_sam, load_mobile_sam
from sam_extension.utils import add_prompts_tag, get_empty_detections, transform_coords
from sam_extension.pipeline.base import Pipeline, Output
from sam_extension.pipeline.groundingdino import GroundingDinoPipeline
from sam_extension.distillation_models.sam import load_distillation_sam, load_sam
from sam_extension.distillation_models import *
ORIGINAL_SAM_IMG_SIZE: int = 1024
PIXEL_MEAN = torch.Tensor([123.675, 116.28, 103.53]).view(-1, 1, 1)
PIXEL_STD = torch.Tensor([58.395, 57.12, 57.375]).view(-1, 1, 1)
PREPROCESS = functools.partial(preprocess, ORIGINAL_SAM_IMG_SIZE, PIXEL_MEAN, PIXEL_STD)
POSTPROCESS_MASKS = functools.partial(postprocess_masks, ORIGINAL_SAM_IMG_SIZE)
@dataclass(repr=True)
class SAMEncoderOutput(Output):
features: torch.Tensor
interm_features: List[torch.Tensor]
original_size: Tuple
input_size: Tuple
@dataclass(repr=True)
class SAMEncoderProcesImgOutput(Output):
input_image: torch.Tensor
original_size: Tuple
input_size: Tuple
@dataclass(repr=True)
class SAMDecoderPredictOutput(Output):
masks_np: np.ndarray
iou_predictions_np: np.ndarray
low_res_masks_np: np.ndarray
@dataclass(repr=True)
class SAMDecoderPredictTorchOutput(Output):
masks: torch.Tensor
iou_predictions: torch.Tensor
low_res_masks: torch.Tensor
class SAMEncoderPipeline(Pipeline):
def __init__(self,
encoder: nn.Module,
input_img_size: Tuple,
multi_output: bool,
preprocess: Callable,
transform: ResizeLongestSide,
device: str,
*args,
**kwargs):
super(SAMEncoderPipeline, self).__init__(*args, **kwargs)
self.encoder = encoder
self.input_img_size = input_img_size
self.multi_output = multi_output
self.preprocess = preprocess
self.transform = transform
self.device = device
@classmethod
def from_pretrained(cls, ckpt_path, device='cuda', *args, **kwargs):
if 'sam_version' not in kwargs.keys():
sam_version = 'sam'
else:
sam_version = kwargs['sam_version']
sam = load_sam(ckpt_path, sam_version, device)
encoder = sam.image_encoder
encoder_type = encoder.__class__.__name__
if encoder_type in ['TinyViT', 'FasterTinyViT', 'SAMEncoderViT', 'DINOSAMViT', 'FlashVisionTransformer']:
multi_output = False
if encoder_type in ['FasterTinyViT', 'SAMEncoderViT', 'DINOSAMViT', 'FlashVisionTransformer']:
input_img_size = (encoder.img_size, encoder.img_size)
if encoder_type == 'DINOSAMViT':
encoder = encoder.dino
else:
input_img_size = (ORIGINAL_SAM_IMG_SIZE, ORIGINAL_SAM_IMG_SIZE)
else:
multi_output = True
input_img_size = (ORIGINAL_SAM_IMG_SIZE, ORIGINAL_SAM_IMG_SIZE)
if sam.adaptor is None:
transform = ResizeLongestSide(ORIGINAL_SAM_IMG_SIZE)
preprocess_ = functools.partial(preprocess, ORIGINAL_SAM_IMG_SIZE, PIXEL_MEAN.to(device), PIXEL_STD.to(device))
else:
transform = T.Compose([
T.Resize(input_img_size),
T.ToTensor(),
T.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225))
])
preprocess_ = None
pipeline = cls(encoder=encoder,
input_img_size=input_img_size,
multi_output=multi_output,
preprocess=preprocess_,
transform=transform,
device=device)
del sam, encoder
torch.cuda.empty_cache()
return pipeline
def process_img(self, img: Union[Image, np.ndarray]) -> SAMEncoderProcesImgOutput:
if self.preprocess is not None:
if isinstance(img, Image):
img = np.uint8(img)
input_image = self.transform.apply_image(img)
input_image_torch = torch.as_tensor(input_image, device=self.device)
input_image_torch = input_image_torch.permute(2, 0, 1).contiguous()[None, :, :, :]
original_size = tuple(img.shape[:2])
input_size = tuple(input_image_torch.shape[-2:])
input_image = F.interpolate(self.preprocess(input_image_torch), size=self.input_img_size, mode='bilinear')
else:
if isinstance(img, np.ndarray):
img = PIL.Image.fromarray(img)
original_size = (img.size[1], img.size[0])
if original_size[0] > original_size[1]:
input_h = 1024
input_w = int((1024 / original_size[0]) * original_size[1])
else:
input_w = 1024
input_h = int((1024 / original_size[1]) * original_size[0])
input_size = (input_h, input_w)
input_image = self.transform(img)[None, ...].to(self.device)
return SAMEncoderProcesImgOutput(input_image, original_size, input_size)
@torch.no_grad()
def get_visual_feature(self, x: Union[torch.Tensor, Image, np.ndarray]=None, **kwargs):
pca_rgb = PCA(n_components=3)
if 'sam_feature' in kwargs.keys() and 'original_size' in kwargs.keys():
sam_feature = kwargs['sam_feature']
original_size = kwargs['original_size']
else:
assert x is not None, 'please give x type Union[torch.Tensor, Image, np.ndarray] !'
sam_encoder_output = self.forward(x, **kwargs)
sam_feature = sam_encoder_output.features
original_size = sam_encoder_output.original_size
assert original_size is not None, 'please give original_size!'
sam_feature = F.interpolate(sam_feature, size=original_size, mode='bilinear').permute(0, 2, 3, 1)
b, h, w, c = sam_feature.shape
sam_feature = sam_feature.view(-1, c).cpu().numpy()
sam_feature = pca_rgb.fit_transform(sam_feature)
sam_feature = torch.Tensor(sam_feature.reshape(h, w, 3))
min_f, _ = sam_feature.min(-1)
max_f, _ = sam_feature.max(-1)
sam_feature = (sam_feature - min_f[..., None]) / (max_f[..., None] - min_f[..., None])
sam_feature = sam_feature.cpu().numpy()
sam_feature_image = PIL.Image.fromarray((sam_feature * 255).astype(np.uint8))
return sam_feature_image
def forward(self, x: Union[torch.Tensor, Image, np.ndarray], **kwargs) -> SAMEncoderOutput:
if isinstance(x, (Image, np.ndarray)):
process_img_output = self.process_img(x)
x = process_img_output.input_image
original_size = process_img_output.original_size
input_size = process_img_output.input_size
else:
original_size = kwargs.pop('original_size') if 'original_size' in kwargs.keys() else None
input_size = x.shape[-2:]
with torch.no_grad():
if self.multi_output:
features, interm_features = self.encoder(x, **kwargs)
else:
features = self.encoder(x, **kwargs)
if self.encoder.__class__.__name__ == 'DINO':
features = features.permute(0, 3, 1, 2)
interm_features = None
return SAMEncoderOutput(features, interm_features, original_size, input_size)
class SAMDecoderPipeline(Pipeline):
def __init__(self,
prompt_encoder: nn.Module,
mask_decoder: nn.Module,
adaptor: nn.Module,
mask_threshold: float,
transform: ResizeLongestSide,
postprocess_masks: Callable,
img_size: int,
device: str,
*args,
**kwargs):
super(SAMDecoderPipeline, self).__init__(*args, **kwargs)
self.prompt_encoder = prompt_encoder
self.mask_decoder = mask_decoder
self.adaptor = adaptor
self.mask_threshold = mask_threshold
self.transform = transform
self.postprocess_masks = postprocess_masks
self.img_size = img_size
self.device = device
@classmethod
def from_pretrained(cls, ckpt_path, device='cuda', *args, **kwargs):
if 'sam_version' not in kwargs.keys():
sam_version = 'sam'
else:
sam_version = kwargs['sam_version']
sam = load_sam(ckpt_path, sam_version, device)
if sam.image_encoder.__class__.__name__ == 'DINOSAMViT':
adaptor = sam.image_encoder.adaptor
elif sam.adaptor is not None:
adaptor = sam.adaptor
else:
adaptor = None
img_size = sam.image_encoder.img_size
prompt_encoder = sam.prompt_encoder
mask_decoder = sam.mask_decoder
transform = ResizeLongestSide(ORIGINAL_SAM_IMG_SIZE)
pipeline = cls(prompt_encoder=prompt_encoder,
mask_decoder=mask_decoder,
adaptor=adaptor,
mask_threshold=sam.mask_threshold,
transform=transform,
postprocess_masks=POSTPROCESS_MASKS,
img_size=img_size,
device=device)
del sam, prompt_encoder, mask_decoder
torch.cuda.empty_cache()
return pipeline
def visualize_prompt(self,
img: Union[Image, np.ndarray],
des_img: Union[Image, np.ndarray] = None,
point_labels: Union[List[int], np.ndarray] = None,
point_coords: Union[List[List[int]], np.ndarray] = None,
boxes: Union[List[List[int]], np.ndarray] = None,
pil: bool = False
) -> Union[Image, np.ndarray]:
if des_img is not None:
if isinstance(des_img, np.ndarray):
des_shape = tuple(des_img.shape[:2])
else:
des_shape = (des_img.size[1], des_img.size[0])
src_shape = (img.size[1], img.size[0])
point_coords, boxes = transform_coords(src_shape, des_shape, point_coords, boxes)
return add_prompts_tag(des_img, point_labels, point_coords, boxes, pil)
else:
return add_prompts_tag(img, point_labels, point_coords, boxes, pil)
def visualize_results(self,
img: Union[Image, np.ndarray],
des_img: Union[Image, np.ndarray] = None,
sam_encoder_output: Optional[SAMEncoderOutput] = None,
features: Optional[torch.Tensor] = None,
interm_features: Optional[List[torch.Tensor]] = None,
original_size: Optional[Tuple] = None,
input_size: Optional[Tuple] = None,
point_coords: Optional[np.ndarray] = None,
point_labels: Optional[np.ndarray] = None,
boxes: Optional[np.ndarray] = None,
texts: Optional[List] = None,
grounding_dino_pipeline: GroundingDinoPipeline = None,
box_threshold: float = 0.25,
text_threshold: float = 0.25,
nms_threshold: float = 0.8,
detections: Optional[sv.Detections] = None,
multimask_output: bool = True,
visualize_promts: bool = True,
pil: bool = False):
if isinstance(img, Image):
img = np.uint8(img)
if des_img is not None:
if isinstance(des_img, np.ndarray):
des_shape = tuple(des_img.shape[:2])
else:
des_shape = (des_img.size[1], des_img.size[0])
src_shape = img.shape[:2]
if point_coords is not None or boxes is not None:
des_point_coords, des_boxes = transform_coords(src_shape, des_shape, point_coords, boxes)
else:
des_point_coords = None
des_boxes = None
else:
des_point_coords = None
des_boxes = None
src_shape = None
des_shape = None
detections = get_empty_detections() if detections is None else detections
mask_annotator = sv.MaskAnnotator()
result_list = []
mask_result_list = []
mask_list = []
if boxes is None and point_coords is None and point_labels is None and texts is None or \
(point_coords is not None and point_labels is not None and point_coords.shape[0] != point_labels.shape[0]):
print('no prompt given!')
result_list.append(img)
return result_list
# if boxes is not None and point_coords is not None and point_labels is not None:
# multimask_output = False
def get_annotated_image(mask_annotator,
detections,
img,
point_labels=None,
point_coords=None,
boxes=None,
visualize_promts=True,
pil=False):
annotated_image = mask_annotator.annotate(scene=img.copy(), detections=detections)
if visualize_promts:
annotated_image = add_prompts_tag(annotated_image, point_labels, point_coords, boxes=boxes, pil=pil)
else:
if pil:
annotated_image = PIL.Image.fromarray(annotated_image)
return annotated_image
def get_masked_image(img,
masks,
pil=True):
masked_image_list = []
for i in range(masks.shape[0]):
object_rgb = img * (masks[i].reshape(img.shape[0], img.shape[1], 1))
object_rgb = object_rgb.astype(np.uint8)
bkgd_mask = np.where(object_rgb == 0, 1, 0)
bkgd_mask *= 255
bkgd_mask = bkgd_mask.astype(np.uint8)
object_rgb += bkgd_mask
if pil:
masked_image_list.append(PIL.Image.fromarray(object_rgb))
else:
masked_image_list.append(object_rgb)
return masked_image_list
def interpolate_mask(mask_np, des_shape):
mask_tensor = torch.tensor(mask_np, dtype=torch.float32).unsqueeze(0)
mask_interpolate = F.interpolate(mask_tensor, size=des_shape, mode='bilinear')
mask_interpolate = (mask_interpolate+0.5).long()
mask_np = mask_interpolate.squeeze(0).numpy().astype(bool)
return mask_np
if point_coords is not None and point_labels is not None:
if src_shape is not None:
point_result = self.forward(sam_encoder_output,
features,
interm_features,
original_size,
input_size,
des_point_coords,
point_labels)
masks_np = interpolate_mask(point_result.masks_np, src_shape)
else:
point_result = self.forward(sam_encoder_output,
features,
interm_features,
original_size,
input_size,
point_coords,
point_labels)
masks_np = point_result.masks_np
if multimask_output:
for i in range(masks_np.shape[0]):
detections.mask = masks_np[i][None, ...]
mask_list.append(masks_np[i])
result_list.append(get_annotated_image(mask_annotator,
detections,
img,
point_labels=point_labels,
point_coords=point_coords,
visualize_promts=visualize_promts,
pil=pil))
mask_result_list += get_masked_image(img,
detections.mask,
pil=pil)
else:
index = np.argmax(point_result.iou_predictions_np)
detections.mask = masks_np[index][None, ...]
mask_list.append(masks_np[index])
result_list.append(get_annotated_image(mask_annotator,
detections,
img,
point_labels=point_labels,
point_coords=point_coords,
visualize_promts=visualize_promts,
pil=pil))
mask_result_list += get_masked_image(img,
detections.mask,
pil=pil)
if boxes is not None:
result_masks = []
if src_shape is not None:
boxes_ = des_boxes
else:
boxes_ = boxes
if boxes_.shape[0] > 1:
for i in range(len(boxes)):
box_result = self.forward(sam_encoder_output,
features,
interm_features,
original_size,
input_size,
box=boxes_[i])
index = np.argmax(box_result.iou_predictions_np)
result_masks.append(box_result.masks_np[index])
mask = np.array(result_masks)
if src_shape is not None:
masks_np = interpolate_mask(mask, src_shape)
else:
masks_np = mask
mask_list.append(masks_np)
detections.mask = masks_np
result_list.append(get_annotated_image(mask_annotator,
detections,
img,
boxes=boxes,
visualize_promts=visualize_promts,
pil=pil))
mask_result_list += get_masked_image(img,
detections.mask,
pil=pil)
else:
box_result = self.forward(sam_encoder_output,
features,
interm_features,
original_size,
input_size,
box=boxes_)
if src_shape is not None:
masks_np = interpolate_mask(box_result.masks_np, src_shape)
else:
masks_np = box_result.masks_np
if multimask_output:
for i in range(masks_np.shape[0]):
detections.mask = masks_np[i][None, ...]
mask_list.append(masks_np[i])
result_list.append(get_annotated_image(mask_annotator,
detections,
img,
boxes=boxes,
visualize_promts=visualize_promts,
pil=pil))
mask_result_list += get_masked_image(img,
detections.mask,
pil=pil)
else:
index = np.argmax(box_result.iou_predictions_np)
detections.mask = masks_np[index][None, ...]
mask_list.append(masks_np[index])
result_list.append(get_annotated_image(mask_annotator, detections, img, boxes=boxes, pil=pil))
mask_result_list += get_masked_image(img,
detections.mask,
pil=pil)
if texts is not None and grounding_dino_pipeline is not None:
detections = grounding_dino_pipeline(img[:, :, ::-1], texts, box_threshold, text_threshold)
box_annotator = sv.BoxAnnotator()
nms_idx = torchvision.ops.nms(
torch.from_numpy(detections.xyxy),
torch.from_numpy(detections.confidence),
nms_threshold
).numpy().tolist()
detections.xyxy = detections.xyxy[nms_idx]
detections.confidence = detections.confidence[nms_idx]
detections.class_id = detections.class_id[nms_idx]
labels = [
f"{texts[class_id]} {confidence:0.2f}"
for _, _, confidence, class_id, _
in detections]
result_masks = []
if src_shape is not None:
_, boxes_ = transform_coords(src_shape, des_shape, boxes=detections.xyxy)
else:
boxes_ = detections.xyxy
for box in boxes_:
box_result = self.forward(sam_encoder_output,
features,
interm_features,
original_size,
input_size,
box=box)
index = np.argmax(box_result.iou_predictions_np)
result_masks.append(box_result.masks_np[index])
mask = np.array(result_masks)
if src_shape is not None:
detections.mask = interpolate_mask(mask, src_shape)
else:
detections.mask = mask
for i in range(detections.mask.shape[0]):
mask_list.append(detections.mask[i, ...])
if visualize_promts:
annotated_image = mask_annotator.annotate(scene=img[:, :, ::-1].copy(), detections=detections)
annotated_image = box_annotator.annotate(scene=annotated_image, detections=detections, labels=labels)
else:
annotated_image = mask_annotator.annotate(scene=img[:, :, ::-1].copy(), detections=detections)
if pil:
result_list.append(PIL.Image.fromarray(annotated_image[:, :, ::-1]))
else:
result_list.append(annotated_image[:, :, ::-1])
mask_result_list += get_masked_image(img,
detections.mask,
pil=pil)
return result_list, mask_result_list, mask_list
def predict(
self,
features: torch.Tensor,
interm_features: List[torch.Tensor],
original_size: Tuple,
input_size: Tuple,
point_coords: Optional[np.ndarray] = None,
point_labels: Optional[np.ndarray] = None,
box: Optional[np.ndarray] = None,
mask_input: Optional[np.ndarray] = None,
multimask_output: bool = True,
return_logits: bool = False,
hq_token_only: bool = False,
) -> SAMDecoderPredictOutput:
"""
Predict masks for the given input prompts, using the currently set image.
Arguments:
point_coords (np.ndarray or None): A Nx2 array of point prompts to the
model. Each point is in (X,Y) in pixels.
point_labels (np.ndarray or None): A length N array of labels for the
point prompts. 1 indicates a foreground point and 0 indicates a
background point.
box (np.ndarray or None): A length 4 array given a box prompt to the
model, in XYXY format.
mask_input (np.ndarray): A low resolution mask input to the model, typically
coming from a previous prediction iteration. Has form 1xHxW, where
for SAM, H=W=256.
multimask_output (bool): If true, the model will return three masks.
For ambiguous input prompts (such as a single click), this will often
produce better masks than a single prediction. If only a single
mask is needed, the model's predicted quality score can be used
to select the best mask. For non-ambiguous prompts, such as multiple
input prompts, multimask_output=False can give better results.
return_logits (bool): If true, returns un-thresholded masks logits
instead of a binary mask.
Returns:
(np.ndarray): The output masks in CxHxW format, where C is the
number of masks, and (H, W) is the original image size.
(np.ndarray): An array of length C containing the model's
predictions for the quality of each mask.
(np.ndarray): An array of shape CxHxW, where C is the number
of masks and H=W=256. These low resolution logits can be passed to
a subsequent iteration as mask input.
"""
# Transform input prompts
coords_torch, labels_torch, box_torch, mask_input_torch = None, None, None, None
if point_coords is not None:
assert (
point_labels is not None
), "point_labels must be supplied if point_coords is supplied."
point_coords = self.transform.apply_coords(point_coords, original_size)
coords_torch = torch.as_tensor(point_coords, dtype=torch.float, device=self.device)
labels_torch = torch.as_tensor(point_labels, dtype=torch.int, device=self.device)
coords_torch, labels_torch = coords_torch[None, :, :], labels_torch[None, :]
if box is not None:
box = self.transform.apply_boxes(box, original_size)
box_torch = torch.as_tensor(box, dtype=torch.float, device=self.device)
box_torch = box_torch[None, :]
if mask_input is not None:
mask_input_torch = torch.as_tensor(mask_input, dtype=torch.float, device=self.device)
mask_input_torch = mask_input_torch[None, :, :, :]
sam_decoder_predict_torch_output = self.predict_torch(
features,
interm_features,
original_size,
input_size,
coords_torch,
labels_torch,
box_torch,
mask_input_torch,
multimask_output,
return_logits=return_logits,
hq_token_only=hq_token_only,
)
masks_np = sam_decoder_predict_torch_output.masks[0].detach().cpu().numpy()
iou_predictions_np = sam_decoder_predict_torch_output.iou_predictions[0].detach().cpu().numpy()
low_res_masks_np = sam_decoder_predict_torch_output.low_res_masks[0].detach().cpu().numpy()
return SAMDecoderPredictOutput(masks_np, iou_predictions_np, low_res_masks_np)
@torch.no_grad()
def predict_torch(
self,
features: torch.Tensor,
interm_features: List[torch.Tensor],
original_size: Tuple,
input_size: Tuple,
point_coords: Optional[torch.Tensor],
point_labels: Optional[torch.Tensor],
boxes: Optional[torch.Tensor] = None,
mask_input: Optional[torch.Tensor] = None,
multimask_output: bool = True,
return_logits: bool = False,
hq_token_only: bool = False,
) -> SAMDecoderPredictTorchOutput:
"""
Predict masks for the given input prompts, using the currently set image.
Input prompts are batched torch tensors and are expected to already be
transformed to the input frame using ResizeLongestSide.
Arguments:
point_coords (torch.Tensor or None): A BxNx2 array of point prompts to the
model. Each point is in (X,Y) in pixels.
point_labels (torch.Tensor or None): A BxN array of labels for the
point prompts. 1 indicates a foreground point and 0 indicates a
background point.
boxes (np.ndarray or None): A Bx4 array given a box prompt to the
model, in XYXY format.
mask_input (np.ndarray): A low resolution mask input to the model, typically
coming from a previous prediction iteration. Has form Bx1xHxW, where
for SAM, H=W=256. Masks returned by a previous iteration of the
predict method do not need further transformation.
multimask_output (bool): If true, the model will return three masks.
For ambiguous input prompts (such as a single click), this will often
produce better masks than a single prediction. If only a single
mask is needed, the model's predicted quality score can be used
to select the best mask. For non-ambiguous prompts, such as multiple
input prompts, multimask_output=False can give better results.
return_logits (bool): If true, returns un-thresholded masks logits
instead of a binary mask.
Returns:
(torch.Tensor): The output masks in BxCxHxW format, where C is the
number of masks, and (H, W) is the original image size.
(torch.Tensor): An array of shape BxC containing the model's
predictions for the quality of each mask.
(torch.Tensor): An array of shape BxCxHxW, where C is the number
of masks and H=W=256. These low res logits can be passed to
a subsequent iteration as mask input.
"""
if point_coords is not None:
points = (point_coords, point_labels)
else:
points = None
# Embed prompts
sparse_embeddings, dense_embeddings = self.prompt_encoder(
points=points,
boxes=boxes,
masks=mask_input,
)
# Predict masks
low_res_masks, iou_predictions = self.mask_decoder(
image_embeddings=features,
image_pe=self.prompt_encoder.get_dense_pe(),
sparse_prompt_embeddings=sparse_embeddings,
dense_prompt_embeddings=dense_embeddings,
multimask_output=multimask_output,
hq_token_only=hq_token_only,
interm_embeddings=interm_features,
)
# Upscale the masks to the original image resolution
# masks = self.model.postprocess_masks(low_res_masks, self.input_size, self.original_size)
masks = self.postprocess_masks(low_res_masks, input_size, original_size)
if not return_logits:
masks = masks > self.mask_threshold
return SAMDecoderPredictTorchOutput(masks, iou_predictions, low_res_masks)
def forward(self,
sam_encoder_output: Optional[SAMEncoderOutput]=None,
features: Optional[torch.Tensor]=None,
interm_features: Optional[List[torch.Tensor]]=None,
original_size: Optional[Tuple]=None,
input_size: Optional[Tuple]=None,
point_coords: Optional[np.ndarray] = None,
point_labels: Optional[np.ndarray] = None,
box: Optional[np.ndarray] = None,
mask_input: Optional[np.ndarray] = None,
multimask_output: bool = True,
return_logits: bool = False,
hq_token_only: bool = False,
dino: bool = False
) -> SAMDecoderPredictOutput:
assert sam_encoder_output or (features is not None and original_size is not None and input_size is not None), 'one of sam_encoder_output and four necessary inputs must be given!'
if sam_encoder_output:
features = sam_encoder_output.features
interm_features = sam_encoder_output.interm_features
original_size = sam_encoder_output.original_size
input_size = sam_encoder_output.input_size
if self.adaptor is not None:
if dino:
features = F.interpolate(F.normalize(features, dim=1), size=(64, 64), mode='bilinear').permute(0, 2, 3, 1)
features = self.adaptor(features)
#
# else:
# features = self.adaptor(features, original_size)
return self.predict(features,
interm_features,
original_size,
input_size,
point_coords,
point_labels,
box,
mask_input,
multimask_output,
return_logits,
hq_token_only)
'''
class SAMPipeline(Pipeline):
@classmethod
def from_pretrained(cls, ckpt_path, device='cuda', *args, **kwargs):
sam_encoder_pipeline = SAMEncoderPipeline(ckpt_path, device, *args, **kwargs)
sam_decoder_pipeline = SAMDecoderPipeline(ckpt_path, device, *args, **kwargs)
pipeline = cls(**dict(sam_encoder_pipeline=sam_encoder_pipeline,
sam_decoder_pipeline=sam_decoder_pipeline,
device=device))
return pipeline
'''