Spaces:
Sleeping
Sleeping
from fastapi import FastAPI | |
import requests | |
# from telegram import ChatAction | |
import os | |
from urllib.request import urlopen, Request | |
from bs4 import BeautifulSoup | |
import pandas as pd | |
import json # for graph plotting in website | |
# NLTK VADER for sentiment analysis | |
import nltk | |
nltk.downloader.download("vader_lexicon") | |
from nltk.sentiment.vader import SentimentIntensityAnalyzer | |
import subprocess | |
import os | |
import datetime | |
app = FastAPI() | |
def read_root(): | |
return {"Hello": "World!!!!"} | |
def get_news(ticker): | |
url = finviz_url + ticker | |
req = Request( | |
url=url, | |
headers={ | |
"User-Agent": "Mozilla/5.0 (Windows NT 6.1; WOW64; rv:20.0) Gecko/20100101 Firefox/20.0" | |
}, | |
) | |
response = urlopen(req) | |
# Read the contents of the file into 'html' | |
html = BeautifulSoup(response) | |
# Find 'news-table' in the Soup and load it into 'news_table' | |
news_table = html.find(id="news-table") | |
return news_table | |
# parse news into dataframe | |
def parse_news(news_table): | |
parsed_news = [] | |
today_string = datetime.datetime.today().strftime("%Y-%m-%d") | |
for x in news_table.findAll("tr"): | |
try: | |
# read the text from each tr tag into text | |
# get text from a only | |
text = x.a.get_text() | |
# splite text in the td tag into a list | |
date_scrape = x.td.text.split() | |
# if the length of 'date_scrape' is 1, load 'time' as the only element | |
if len(date_scrape) == 1: | |
time = date_scrape[0] | |
# else load 'date' as the 1st element and 'time' as the second | |
else: | |
date = date_scrape[0] | |
time = date_scrape[1] | |
# Append ticker, date, time and headline as a list to the 'parsed_news' list | |
parsed_news.append([date, time, text]) | |
except: | |
pass | |
# Set column names | |
columns = ["date", "time", "headline"] | |
# Convert the parsed_news list into a DataFrame called 'parsed_and_scored_news' | |
parsed_news_df = pd.DataFrame(parsed_news, columns=columns) | |
# Create a pandas datetime object from the strings in 'date' and 'time' column | |
parsed_news_df["date"] = parsed_news_df["date"].replace("Today", today_string) | |
# parsed_news_df["datetime"] = pd.to_datetime( | |
# parsed_news_df["date"] + " " + parsed_news_df["time"], | |
# format="%Y-%m-%d %H:%M", | |
# ) | |
return parsed_news_df | |
def score_news(parsed_news_df): | |
# Instantiate the sentiment intensity analyzer | |
vader = SentimentIntensityAnalyzer() | |
# Iterate through the headlines and get the polarity scores using vader | |
scores = parsed_news_df["headline"].apply(vader.polarity_scores).tolist() | |
# Convert the 'scores' list of dicts into a DataFrame | |
scores_df = pd.DataFrame(scores) | |
# Join the DataFrames of the news and the list of dicts | |
parsed_and_scored_news = parsed_news_df.join(scores_df, rsuffix="_right") | |
# parsed_and_scored_news = parsed_and_scored_news.set_index("datetime") | |
parsed_and_scored_news = parsed_and_scored_news.drop(["date", "time"], axis=1) | |
parsed_and_scored_news = parsed_and_scored_news.rename( | |
columns={"compound": "sentiment_score"} | |
) | |
return parsed_and_scored_news | |
# for extracting data from finviz | |
finviz_url = "https://finviz.com/quote.ashx?t=" | |
def get_stock_data(ticker): | |
news_table = get_news(ticker) | |
parsed_news_df = parse_news(news_table) | |
parsed_and_scored_news = score_news(parsed_news_df) | |
return parsed_and_scored_news | |
def read_item(ticker: str): | |
stock_data = get_stock_data(ticker) | |
result = stock_data.to_json(orient="columns") | |
return result | |