SVC-ykt / modules /modules.py
Yunshansongbai's picture
Upload 75 files
4585e41
import copy
import math
import numpy as np
import scipy
import paddle
from paddle import nn
from paddle.nn import functional as F
from paddle.nn import Conv1D, Conv1DTranspose, AvgPool1D, Conv2D
from paddle.nn.utils import weight_norm, remove_weight_norm
import modules.commons as commons
from modules.commons import init_weights, get_padding
LRELU_SLOPE = 0.1
class LayerNorm(nn.Layer):
def __init__(self, channels, eps=1e-5):
super().__init__()
self.channels = channels
self.eps = eps
self.gamma = paddle.create_parameter([channels],'float32','modules_Layer_Norm_gamma',\
paddle.ParamAttr(initializer = paddle.nn.initializer.Constant(value=1.0))) # ones,shape = [channels]
self.beta = paddle.create_parameter([channels],'float32','modules_Layer_Norm_beta',\
paddle.ParamAttr(initializer = paddle.nn.initializer.Constant(value=0.0))) # zeros,shape = [channels]
def forward(self, x):
x = x.transpose([0,2,1])#x.transpose(1, -1)
x = F.layer_norm(x, (self.channels,), self.gamma, self.beta, self.eps)
return x.transpose([0,2,1])#x.transpose(1, -1)
class ConvReluNorm(nn.Layer):
def __init__(self, in_channels, hidden_channels, out_channels, kernel_size, n_layers, p_dropout):
super().__init__()
self.in_channels = in_channels
self.hidden_channels = hidden_channels
self.out_channels = out_channels
self.kernel_size = kernel_size
self.n_layers = n_layers
self.p_dropout = p_dropout
assert n_layers > 1, "Number of layers should be larger than 0."
self.conv_layers = nn.LayerList()
self.norm_layers = nn.LayerList()
self.conv_layers.append(nn.Conv1D(in_channels, hidden_channels, kernel_size, padding=kernel_size//2))
self.norm_layers.append(LayerNorm(hidden_channels))
self.relu_drop = nn.Sequential(
nn.ReLU(),
nn.Dropout(p_dropout))
for _ in range(n_layers-1):
self.conv_layers.append(nn.Conv1D(hidden_channels, hidden_channels, kernel_size, padding=kernel_size//2))
self.norm_layers.append(LayerNorm(hidden_channels))
att = paddle.ParamAttr('modules_ConvReluNorm_att',initializer = paddle.nn.initializer.Constant(value=0.0)) # น้มใ
self.proj = nn.Conv1D(hidden_channels, out_channels, 1, weight_attr=att, bias_attr=att)
#self.proj.weight.data.zero_()
#self.proj.bias.data.zero_()
def forward(self, x, x_mask):
x_org = x
for i in range(self.n_layers):
x = self.conv_layers[i](x * x_mask)
x = self.norm_layers[i](x)
x = self.relu_drop(x)
x = x_org + self.proj(x)
return x * x_mask
class DDSConv(nn.Layer):
"""
Dialted and Depth-Separable Convolution
"""
def __init__(self, channels, kernel_size, n_layers, p_dropout=0.):
super().__init__()
self.channels = channels
self.kernel_size = kernel_size
self.n_layers = n_layers
self.p_dropout = p_dropout
self.drop = nn.Dropout(p_dropout)
self.convs_sep = nn.LayerList()
self.convs_1x1 = nn.LayerList()
self.norms_1 = nn.LayerList()
self.norms_2 = nn.LayerList()
for i in range(n_layers):
dilation = kernel_size ** i
padding = (kernel_size * dilation - dilation) // 2
self.convs_sep.append(nn.Conv1D(channels, channels, kernel_size,
groups=channels, dilation=dilation, padding=padding
))
self.convs_1x1.append(nn.Conv1D(channels, channels, 1))
self.norms_1.append(LayerNorm(channels))
self.norms_2.append(LayerNorm(channels))
def forward(self, x, x_mask, g=None):
if g is not None:
x = x + g
for i in range(self.n_layers):
y = self.convs_sep[i](x * x_mask)
y = self.norms_1[i](y)
y = F.gelu(y)
y = self.convs_1x1[i](y)
y = self.norms_2[i](y)
y = F.gelu(y)
y = self.drop(y)
x = x + y
return x * x_mask
class WN(paddle.nn.Layer):
def __init__(self, hidden_channels, kernel_size, dilation_rate, n_layers, gin_channels=0, p_dropout=0):
super(WN, self).__init__()
assert(kernel_size % 2 == 1)
self.hidden_channels =hidden_channels
self.kernel_size = kernel_size,
self.dilation_rate = dilation_rate
self.n_layers = n_layers
self.gin_channels = gin_channels
self.p_dropout = p_dropout
self.in_layers = paddle.nn.LayerList()
self.res_skip_layers = paddle.nn.LayerList()
self.drop = nn.Dropout(p_dropout)
if gin_channels != 0:
cond_layer = paddle.nn.Conv1D(gin_channels, 2*hidden_channels*n_layers, 1)
self.cond_layer = paddle.nn.utils.weight_norm(cond_layer, name='weight')
for i in range(n_layers):
dilation = dilation_rate ** i
padding = int((kernel_size * dilation - dilation) / 2)
in_layer = paddle.nn.Conv1D(hidden_channels, 2*hidden_channels, kernel_size,
dilation=dilation, padding=padding)
in_layer = paddle.nn.utils.weight_norm(in_layer, name='weight')
self.in_layers.append(in_layer)
# last one is not necessary
if i < n_layers - 1:
res_skip_channels = 2 * hidden_channels
else:
res_skip_channels = hidden_channels
res_skip_layer = paddle.nn.Conv1D(hidden_channels, res_skip_channels, 1)
res_skip_layer = paddle.nn.utils.weight_norm(res_skip_layer, name='weight')
self.res_skip_layers.append(res_skip_layer)
def forward(self, x, x_mask, g=None, **kwargs):
output = paddle.zeros_like(x,name = 'module_WN_forward_output')
if g is not None:
g = self.cond_layer(g)
for i in range(self.n_layers):
x_in = self.in_layers[i](x)
if g is not None:
cond_offset = i * 2 * self.hidden_channels
g_l = g[:,cond_offset:cond_offset+2*self.hidden_channels,:]
else:
g_l = paddle.zeros_like(x_in,name = 'module_WN_forward_gl')
input_a=x_in; input_b=g_l
n_channels_int = self.hidden_channels
in_act = input_a + input_b
t_act = paddle.tanh(in_act[:, :n_channels_int, :])
s_act = paddle.nn.functional.sigmoid(in_act[:, n_channels_int:, :])
acts = t_act * s_act
acts = self.drop(acts)
res_skip_acts = self.res_skip_layers[i](acts)
if i < self.n_layers - 1:
res_acts = res_skip_acts[:,:self.hidden_channels,:]
x = (x + res_acts) * x_mask
output = output + res_skip_acts[:,self.hidden_channels:,:]
else:
output = output + res_skip_acts
return output * x_mask
def remove_weight_norm(self):
if self.gin_channels != 0:
paddle.nn.utils.remove_weight_norm(self.cond_layer)
for l in self.in_layers:
paddle.nn.utils.remove_weight_norm(l)
for l in self.res_skip_layers:
paddle.nn.utils.remove_weight_norm(l)
class ResBlock1(paddle.nn.Layer):
def __init__(self, channels, kernel_size=3, dilation=(1, 3, 5)):
super(ResBlock1, self).__init__()
self.convs1 = nn.LayerList([
weight_norm(Conv1D(channels, channels, kernel_size, 1, dilation=dilation[0],
padding=get_padding(kernel_size, dilation[0]))),
weight_norm(Conv1D(channels, channels, kernel_size, 1, dilation=dilation[1],
padding=get_padding(kernel_size, dilation[1]))),
weight_norm(Conv1D(channels, channels, kernel_size, 1, dilation=dilation[2],
padding=get_padding(kernel_size, dilation[2])))
])
self.convs1.apply(init_weights)
self.convs2 = nn.LayerList([
weight_norm(Conv1D(channels, channels, kernel_size, 1, dilation=1,
padding=get_padding(kernel_size, 1))),
weight_norm(Conv1D(channels, channels, kernel_size, 1, dilation=1,
padding=get_padding(kernel_size, 1))),
weight_norm(Conv1D(channels, channels, kernel_size, 1, dilation=1,
padding=get_padding(kernel_size, 1)))
])
self.convs2.apply(init_weights)
def forward(self, x, x_mask=None):
for c1, c2 in zip(self.convs1, self.convs2):
xt = F.leaky_relu(x, LRELU_SLOPE)
if x_mask is not None:
xt = xt * x_mask
xt = c1(xt)
xt = F.leaky_relu(xt, LRELU_SLOPE)
if x_mask is not None:
xt = xt * x_mask
xt = c2(xt)
x = xt + x
if x_mask is not None:
x = x * x_mask
return x
def remove_weight_norm(self):
for l in self.convs1:
remove_weight_norm(l)
for l in self.convs2:
remove_weight_norm(l)
class ResBlock2(paddle.nn.Layer):
def __init__(self, channels, kernel_size=3, dilation=(1, 3)):
super(ResBlock2, self).__init__()
self.convs = nn.LayerList([
weight_norm(Conv1D(channels, channels, kernel_size, 1, dilation=dilation[0],
padding=get_padding(kernel_size, dilation[0]))),
weight_norm(Conv1D(channels, channels, kernel_size, 1, dilation=dilation[1],
padding=get_padding(kernel_size, dilation[1])))
])
self.convs.apply(init_weights)
def forward(self, x, x_mask=None):
for c in self.convs:
xt = F.leaky_relu(x, LRELU_SLOPE)
if x_mask is not None:
xt = xt * x_mask
xt = c(xt)
x = xt + x
if x_mask is not None:
x = x * x_mask
return x
def remove_weight_norm(self):
for l in self.convs:
remove_weight_norm(l)
class Log(nn.Layer):
def forward(self, x, x_mask, reverse=False, **kwargs):
if not reverse:
y = paddle.log(paddle.clip(x, 1e-5)) * x_mask
logdet = paddle.sum(-y, [1, 2])
return y, logdet
else:
x = paddle.exp(x) * x_mask
return x
class Flip(nn.Layer):
def forward(self, x, *args, reverse=False, **kwargs):
x = paddle.flip(x, [1])
if not reverse:
logdet = paddle.zeros([x.shape[0]]).astype(x.dtype)
return x, logdet
else:
return x
class ElementwiseAffine(nn.Layer):
def __init__(self, channels):
super().__init__()
self.channels = channels
self.m = paddle.create_parameter([channels,1],'float32',None,\
paddle.ParamAttr(initializer = paddle.nn.initializer.Constant(value=0.0)))
self.logs = paddle.create_parameter([channels,1],'float32',None,\
paddle.ParamAttr(initializer = paddle.nn.initializer.Constant(value=0.0)))
def forward(self, x, x_mask, reverse=False, **kwargs):
if not reverse:
y = self.m + paddle.exp(self.logs) * x
y = y * x_mask
logdet = paddle.sum(self.logs * x_mask, [1,2])
return y, logdet
else:
x = (x - self.m) * paddle.exp(-self.logs) * x_mask
return x
class ResidualCouplingLayer(nn.Layer):
def __init__(self,
channels,
hidden_channels,
kernel_size,
dilation_rate,
n_layers,
p_dropout=0,
gin_channels=0,
mean_only=False):
assert channels % 2 == 0, "channels should be divisible by 2"
super().__init__()
self.channels = channels
self.hidden_channels = hidden_channels
self.kernel_size = kernel_size
self.dilation_rate = dilation_rate
self.n_layers = n_layers
self.half_channels = channels // 2
self.mean_only = mean_only
self.pre = nn.Conv1D(self.half_channels, hidden_channels, 1)
self.enc = WN(hidden_channels, kernel_size, dilation_rate, n_layers, p_dropout=p_dropout, gin_channels=gin_channels)
att = paddle.ParamAttr(initializer = paddle.nn.initializer.Constant(value=0.0)) # น้มใ
self.post = nn.Conv1D(hidden_channels, self.half_channels * (2 - mean_only), 1,weight_attr=att, bias_attr=att)
#self.post.weight.data.zero_()
#self.post.bias.data.zero_()
def forward(self, x, x_mask, g=None, reverse=False):
x0, x1 = paddle.split(x, [self.half_channels]*2, 1)
h = self.pre(x0) * x_mask
h = self.enc(h, x_mask, g=g)
stats = self.post(h) * x_mask
if not self.mean_only:
m, logs = paddle.split(stats, [self.half_channels]*2, 1)
else:
m = stats
logs = paddle.zeros_like(m)
if not reverse:
x1 = m + x1 * paddle.exp(logs) * x_mask
x = paddle.concat([x0, x1], 1)
logdet = paddle.sum(logs, [1,2])
return x, logdet
else:
x1 = (x1 - m) * paddle.exp(-logs) * x_mask
x = paddle.concat([x0, x1], 1)
return x