Yinhong Liu
commited on
Commit
·
c3c658f
1
Parent(s):
eab8699
sd3 pipeline
Browse files- requirements.txt +2 -1
- sid/__init__.py +53 -0
- sid/pipeline_output.py +21 -0
- sid/pipeline_sid_flux.py +0 -0
- sid/pipeline_sid_sana.py +0 -0
- sid/pipeline_sid_sd3.py +806 -0
requirements.txt
CHANGED
|
@@ -3,4 +3,5 @@ diffusers
|
|
| 3 |
invisible_watermark
|
| 4 |
torch
|
| 5 |
transformers
|
| 6 |
-
xformers
|
|
|
|
|
|
| 3 |
invisible_watermark
|
| 4 |
torch
|
| 5 |
transformers
|
| 6 |
+
xformers
|
| 7 |
+
sentencepiece
|
sid/__init__.py
ADDED
|
@@ -0,0 +1,53 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from typing import TYPE_CHECKING
|
| 2 |
+
|
| 3 |
+
from ...utils import (
|
| 4 |
+
DIFFUSERS_SLOW_IMPORT,
|
| 5 |
+
OptionalDependencyNotAvailable,
|
| 6 |
+
_LazyModule,
|
| 7 |
+
get_objects_from_module,
|
| 8 |
+
is_flax_available,
|
| 9 |
+
is_torch_available,
|
| 10 |
+
is_transformers_available,
|
| 11 |
+
)
|
| 12 |
+
|
| 13 |
+
|
| 14 |
+
_dummy_objects = {}
|
| 15 |
+
_additional_imports = {}
|
| 16 |
+
_import_structure = {"pipeline_output": ["SiDPipelineOutput"]}
|
| 17 |
+
|
| 18 |
+
try:
|
| 19 |
+
if not (is_transformers_available() and is_torch_available()):
|
| 20 |
+
raise OptionalDependencyNotAvailable()
|
| 21 |
+
except OptionalDependencyNotAvailable:
|
| 22 |
+
from ...utils import dummy_torch_and_transformers_objects # noqa F403
|
| 23 |
+
|
| 24 |
+
_dummy_objects.update(get_objects_from_module(dummy_torch_and_transformers_objects))
|
| 25 |
+
else:
|
| 26 |
+
_import_structure["pipeline_sid_sd3"] = ["SiDSD3Pipeline"]
|
| 27 |
+
_import_structure["pipeline_sid_flux"] = ["SiDFluxPipeline"]
|
| 28 |
+
_import_structure["pipeline_sid_sana"] = ["SiDSanaPipeline"]
|
| 29 |
+
|
| 30 |
+
if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
|
| 31 |
+
try:
|
| 32 |
+
if not (is_transformers_available() and is_torch_available()):
|
| 33 |
+
raise OptionalDependencyNotAvailable()
|
| 34 |
+
except OptionalDependencyNotAvailable:
|
| 35 |
+
from ...utils.dummy_torch_and_transformers_objects import * # noqa F403
|
| 36 |
+
else:
|
| 37 |
+
from .pipeline_sid_sd3 import SiDSD3Pipeline
|
| 38 |
+
from .pipeline_sid_flux import SiDFluxPipeline
|
| 39 |
+
from .pipeline_sid_sana import SiDSanaPipeline
|
| 40 |
+
else:
|
| 41 |
+
import sys
|
| 42 |
+
|
| 43 |
+
sys.modules[__name__] = _LazyModule(
|
| 44 |
+
__name__,
|
| 45 |
+
globals()["__file__"],
|
| 46 |
+
_import_structure,
|
| 47 |
+
module_spec=__spec__,
|
| 48 |
+
)
|
| 49 |
+
|
| 50 |
+
for name, value in _dummy_objects.items():
|
| 51 |
+
setattr(sys.modules[__name__], name, value)
|
| 52 |
+
for name, value in _additional_imports.items():
|
| 53 |
+
setattr(sys.modules[__name__], name, value)
|
sid/pipeline_output.py
ADDED
|
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from dataclasses import dataclass
|
| 2 |
+
from typing import List, Union
|
| 3 |
+
|
| 4 |
+
import numpy as np
|
| 5 |
+
import PIL.Image
|
| 6 |
+
|
| 7 |
+
from ...utils import BaseOutput
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
@dataclass
|
| 11 |
+
class SiDPipelineOutput(BaseOutput):
|
| 12 |
+
"""
|
| 13 |
+
Output class for Stable Diffusion pipelines.
|
| 14 |
+
|
| 15 |
+
Args:
|
| 16 |
+
images (`List[PIL.Image.Image]` or `np.ndarray`)
|
| 17 |
+
List of denoised PIL images of length `batch_size` or numpy array of shape `(batch_size, height, width,
|
| 18 |
+
num_channels)`. PIL images or numpy array present the denoised images of the diffusion pipeline.
|
| 19 |
+
"""
|
| 20 |
+
|
| 21 |
+
images: Union[List[PIL.Image.Image], np.ndarray]
|
sid/pipeline_sid_flux.py
ADDED
|
File without changes
|
sid/pipeline_sid_sana.py
ADDED
|
File without changes
|
sid/pipeline_sid_sd3.py
ADDED
|
@@ -0,0 +1,806 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright 2025 Stability AI, The HuggingFace Team and The InstantX Team. All rights reserved.
|
| 2 |
+
#
|
| 3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 4 |
+
# you may not use this file except in compliance with the License.
|
| 5 |
+
# You may obtain a copy of the License at
|
| 6 |
+
#
|
| 7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 8 |
+
#
|
| 9 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 12 |
+
# See the License for the specific language governing permissions and
|
| 13 |
+
# limitations under the License.
|
| 14 |
+
|
| 15 |
+
import inspect
|
| 16 |
+
from typing import Any, Callable, Dict, List, Optional, Union
|
| 17 |
+
|
| 18 |
+
import torch
|
| 19 |
+
from transformers import (
|
| 20 |
+
CLIPTextModelWithProjection,
|
| 21 |
+
CLIPTokenizer,
|
| 22 |
+
SiglipImageProcessor,
|
| 23 |
+
SiglipVisionModel,
|
| 24 |
+
T5EncoderModel,
|
| 25 |
+
T5TokenizerFast,
|
| 26 |
+
)
|
| 27 |
+
|
| 28 |
+
from diffusers.callbacks import MultiPipelineCallbacks, PipelineCallback
|
| 29 |
+
from diffusers.image_processor import PipelineImageInput, VaeImageProcessor
|
| 30 |
+
from diffusers.loaders import FromSingleFileMixin, SD3IPAdapterMixin, SD3LoraLoaderMixin
|
| 31 |
+
from diffusers.models.autoencoders import AutoencoderKL
|
| 32 |
+
from diffusers.models.transformers import SD3Transformer2DModel
|
| 33 |
+
from diffusers.schedulers import FlowMatchEulerDiscreteScheduler
|
| 34 |
+
from diffusers.utils import (
|
| 35 |
+
USE_PEFT_BACKEND,
|
| 36 |
+
is_torch_xla_available,
|
| 37 |
+
logging,
|
| 38 |
+
replace_example_docstring,
|
| 39 |
+
scale_lora_layers,
|
| 40 |
+
unscale_lora_layers,
|
| 41 |
+
)
|
| 42 |
+
from diffusers.utils.torch_utils import randn_tensor
|
| 43 |
+
from diffusers.pipelines.pipeline_utils import DiffusionPipeline
|
| 44 |
+
from .pipeline_output import SiDPipelineOutput
|
| 45 |
+
|
| 46 |
+
|
| 47 |
+
if is_torch_xla_available():
|
| 48 |
+
import torch_xla.core.xla_model as xm
|
| 49 |
+
|
| 50 |
+
XLA_AVAILABLE = True
|
| 51 |
+
else:
|
| 52 |
+
XLA_AVAILABLE = False
|
| 53 |
+
|
| 54 |
+
|
| 55 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
| 56 |
+
|
| 57 |
+
EXAMPLE_DOC_STRING = """
|
| 58 |
+
Examples:
|
| 59 |
+
```py
|
| 60 |
+
>>> import torch
|
| 61 |
+
>>> from diffusers import StableDiffusion3Pipeline
|
| 62 |
+
|
| 63 |
+
>>> pipe = StableDiffusion3Pipeline.from_pretrained(
|
| 64 |
+
... "stabilityai/stable-diffusion-3-medium-diffusers", torch_dtype=torch.float16
|
| 65 |
+
... )
|
| 66 |
+
>>> pipe.to("cuda")
|
| 67 |
+
>>> prompt = "A cat holding a sign that says hello world"
|
| 68 |
+
>>> image = pipe(prompt).images[0]
|
| 69 |
+
>>> image.save("sd3.png")
|
| 70 |
+
```
|
| 71 |
+
"""
|
| 72 |
+
|
| 73 |
+
|
| 74 |
+
# Copied from diffusers.pipelines.flux.pipeline_flux.calculate_shift
|
| 75 |
+
def calculate_shift(
|
| 76 |
+
image_seq_len,
|
| 77 |
+
base_seq_len: int = 256,
|
| 78 |
+
max_seq_len: int = 4096,
|
| 79 |
+
base_shift: float = 0.5,
|
| 80 |
+
max_shift: float = 1.15,
|
| 81 |
+
):
|
| 82 |
+
m = (max_shift - base_shift) / (max_seq_len - base_seq_len)
|
| 83 |
+
b = base_shift - m * base_seq_len
|
| 84 |
+
mu = image_seq_len * m + b
|
| 85 |
+
return mu
|
| 86 |
+
|
| 87 |
+
|
| 88 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps
|
| 89 |
+
def retrieve_timesteps(
|
| 90 |
+
scheduler,
|
| 91 |
+
num_inference_steps: Optional[int] = None,
|
| 92 |
+
device: Optional[Union[str, torch.device]] = None,
|
| 93 |
+
timesteps: Optional[List[int]] = None,
|
| 94 |
+
sigmas: Optional[List[float]] = None,
|
| 95 |
+
**kwargs,
|
| 96 |
+
):
|
| 97 |
+
r"""
|
| 98 |
+
Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
|
| 99 |
+
custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
|
| 100 |
+
|
| 101 |
+
Args:
|
| 102 |
+
scheduler (`SchedulerMixin`):
|
| 103 |
+
The scheduler to get timesteps from.
|
| 104 |
+
num_inference_steps (`int`):
|
| 105 |
+
The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps`
|
| 106 |
+
must be `None`.
|
| 107 |
+
device (`str` or `torch.device`, *optional*):
|
| 108 |
+
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
|
| 109 |
+
timesteps (`List[int]`, *optional*):
|
| 110 |
+
Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed,
|
| 111 |
+
`num_inference_steps` and `sigmas` must be `None`.
|
| 112 |
+
sigmas (`List[float]`, *optional*):
|
| 113 |
+
Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed,
|
| 114 |
+
`num_inference_steps` and `timesteps` must be `None`.
|
| 115 |
+
|
| 116 |
+
Returns:
|
| 117 |
+
`Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
|
| 118 |
+
second element is the number of inference steps.
|
| 119 |
+
"""
|
| 120 |
+
if timesteps is not None and sigmas is not None:
|
| 121 |
+
raise ValueError(
|
| 122 |
+
"Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values"
|
| 123 |
+
)
|
| 124 |
+
if timesteps is not None:
|
| 125 |
+
accepts_timesteps = "timesteps" in set(
|
| 126 |
+
inspect.signature(scheduler.set_timesteps).parameters.keys()
|
| 127 |
+
)
|
| 128 |
+
if not accepts_timesteps:
|
| 129 |
+
raise ValueError(
|
| 130 |
+
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
|
| 131 |
+
f" timestep schedules. Please check whether you are using the correct scheduler."
|
| 132 |
+
)
|
| 133 |
+
scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
|
| 134 |
+
timesteps = scheduler.timesteps
|
| 135 |
+
num_inference_steps = len(timesteps)
|
| 136 |
+
elif sigmas is not None:
|
| 137 |
+
accept_sigmas = "sigmas" in set(
|
| 138 |
+
inspect.signature(scheduler.set_timesteps).parameters.keys()
|
| 139 |
+
)
|
| 140 |
+
if not accept_sigmas:
|
| 141 |
+
raise ValueError(
|
| 142 |
+
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
|
| 143 |
+
f" sigmas schedules. Please check whether you are using the correct scheduler."
|
| 144 |
+
)
|
| 145 |
+
scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
|
| 146 |
+
timesteps = scheduler.timesteps
|
| 147 |
+
num_inference_steps = len(timesteps)
|
| 148 |
+
else:
|
| 149 |
+
scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
|
| 150 |
+
timesteps = scheduler.timesteps
|
| 151 |
+
return timesteps, num_inference_steps
|
| 152 |
+
|
| 153 |
+
|
| 154 |
+
class SiDSD3Pipeline(
|
| 155 |
+
DiffusionPipeline, SD3LoraLoaderMixin, FromSingleFileMixin, SD3IPAdapterMixin
|
| 156 |
+
):
|
| 157 |
+
r"""
|
| 158 |
+
Args:
|
| 159 |
+
transformer ([`SD3Transformer2DModel`]):
|
| 160 |
+
Conditional Transformer (MMDiT) architecture to denoise the encoded image latents.
|
| 161 |
+
scheduler ([`FlowMatchEulerDiscreteScheduler`]):
|
| 162 |
+
A scheduler to be used in combination with `transformer` to denoise the encoded image latents.
|
| 163 |
+
vae ([`AutoencoderKL`]):
|
| 164 |
+
Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
|
| 165 |
+
text_encoder ([`CLIPTextModelWithProjection`]):
|
| 166 |
+
[CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModelWithProjection),
|
| 167 |
+
specifically the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant,
|
| 168 |
+
with an additional added projection layer that is initialized with a diagonal matrix with the `hidden_size`
|
| 169 |
+
as its dimension.
|
| 170 |
+
text_encoder_2 ([`CLIPTextModelWithProjection`]):
|
| 171 |
+
[CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModelWithProjection),
|
| 172 |
+
specifically the
|
| 173 |
+
[laion/CLIP-ViT-bigG-14-laion2B-39B-b160k](https://huggingface.co/laion/CLIP-ViT-bigG-14-laion2B-39B-b160k)
|
| 174 |
+
variant.
|
| 175 |
+
text_encoder_3 ([`T5EncoderModel`]):
|
| 176 |
+
Frozen text-encoder. Stable Diffusion 3 uses
|
| 177 |
+
[T5](https://huggingface.co/docs/transformers/model_doc/t5#transformers.T5EncoderModel), specifically the
|
| 178 |
+
[t5-v1_1-xxl](https://huggingface.co/google/t5-v1_1-xxl) variant.
|
| 179 |
+
tokenizer (`CLIPTokenizer`):
|
| 180 |
+
Tokenizer of class
|
| 181 |
+
[CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
|
| 182 |
+
tokenizer_2 (`CLIPTokenizer`):
|
| 183 |
+
Second Tokenizer of class
|
| 184 |
+
[CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
|
| 185 |
+
tokenizer_3 (`T5TokenizerFast`):
|
| 186 |
+
Tokenizer of class
|
| 187 |
+
[T5Tokenizer](https://huggingface.co/docs/transformers/model_doc/t5#transformers.T5Tokenizer).
|
| 188 |
+
image_encoder (`SiglipVisionModel`, *optional*):
|
| 189 |
+
Pre-trained Vision Model for IP Adapter.
|
| 190 |
+
feature_extractor (`SiglipImageProcessor`, *optional*):
|
| 191 |
+
Image processor for IP Adapter.
|
| 192 |
+
"""
|
| 193 |
+
|
| 194 |
+
model_cpu_offload_seq = (
|
| 195 |
+
"text_encoder->text_encoder_2->text_encoder_3->image_encoder->transformer->vae"
|
| 196 |
+
)
|
| 197 |
+
_optional_components = ["image_encoder", "feature_extractor"]
|
| 198 |
+
_callback_tensor_inputs = ["latents", "prompt_embeds", "pooled_prompt_embeds"]
|
| 199 |
+
|
| 200 |
+
def __init__(
|
| 201 |
+
self,
|
| 202 |
+
transformer: SD3Transformer2DModel,
|
| 203 |
+
scheduler: FlowMatchEulerDiscreteScheduler,
|
| 204 |
+
vae: AutoencoderKL,
|
| 205 |
+
text_encoder: CLIPTextModelWithProjection,
|
| 206 |
+
tokenizer: CLIPTokenizer,
|
| 207 |
+
text_encoder_2: CLIPTextModelWithProjection,
|
| 208 |
+
tokenizer_2: CLIPTokenizer,
|
| 209 |
+
text_encoder_3: T5EncoderModel,
|
| 210 |
+
tokenizer_3: T5TokenizerFast,
|
| 211 |
+
image_encoder: SiglipVisionModel = None,
|
| 212 |
+
feature_extractor: SiglipImageProcessor = None,
|
| 213 |
+
):
|
| 214 |
+
super().__init__()
|
| 215 |
+
|
| 216 |
+
self.register_modules(
|
| 217 |
+
vae=vae,
|
| 218 |
+
text_encoder=text_encoder,
|
| 219 |
+
text_encoder_2=text_encoder_2,
|
| 220 |
+
text_encoder_3=text_encoder_3,
|
| 221 |
+
tokenizer=tokenizer,
|
| 222 |
+
tokenizer_2=tokenizer_2,
|
| 223 |
+
tokenizer_3=tokenizer_3,
|
| 224 |
+
transformer=transformer,
|
| 225 |
+
scheduler=scheduler,
|
| 226 |
+
image_encoder=image_encoder,
|
| 227 |
+
feature_extractor=feature_extractor,
|
| 228 |
+
)
|
| 229 |
+
self.vae_scale_factor = (
|
| 230 |
+
2 ** (len(self.vae.config.block_out_channels) - 1)
|
| 231 |
+
if getattr(self, "vae", None)
|
| 232 |
+
else 8
|
| 233 |
+
)
|
| 234 |
+
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
|
| 235 |
+
self.tokenizer_max_length = (
|
| 236 |
+
self.tokenizer.model_max_length
|
| 237 |
+
if hasattr(self, "tokenizer") and self.tokenizer is not None
|
| 238 |
+
else 77
|
| 239 |
+
)
|
| 240 |
+
self.default_sample_size = (
|
| 241 |
+
self.transformer.config.sample_size
|
| 242 |
+
if hasattr(self, "transformer") and self.transformer is not None
|
| 243 |
+
else 128
|
| 244 |
+
)
|
| 245 |
+
self.patch_size = (
|
| 246 |
+
self.transformer.config.patch_size
|
| 247 |
+
if hasattr(self, "transformer") and self.transformer is not None
|
| 248 |
+
else 2
|
| 249 |
+
)
|
| 250 |
+
|
| 251 |
+
def _get_t5_prompt_embeds(
|
| 252 |
+
self,
|
| 253 |
+
prompt: Union[str, List[str]] = None,
|
| 254 |
+
num_images_per_prompt: int = 1,
|
| 255 |
+
max_sequence_length: int = 256,
|
| 256 |
+
device: Optional[torch.device] = None,
|
| 257 |
+
dtype: Optional[torch.dtype] = None,
|
| 258 |
+
):
|
| 259 |
+
device = device or self._execution_device
|
| 260 |
+
dtype = dtype or self.text_encoder.dtype
|
| 261 |
+
|
| 262 |
+
prompt = [prompt] if isinstance(prompt, str) else prompt
|
| 263 |
+
batch_size = len(prompt)
|
| 264 |
+
|
| 265 |
+
if self.text_encoder_3 is None:
|
| 266 |
+
return torch.zeros(
|
| 267 |
+
(
|
| 268 |
+
batch_size * num_images_per_prompt,
|
| 269 |
+
self.tokenizer_max_length,
|
| 270 |
+
self.transformer.config.joint_attention_dim,
|
| 271 |
+
),
|
| 272 |
+
device=device,
|
| 273 |
+
dtype=dtype,
|
| 274 |
+
)
|
| 275 |
+
|
| 276 |
+
text_inputs = self.tokenizer_3(
|
| 277 |
+
prompt,
|
| 278 |
+
padding="max_length",
|
| 279 |
+
max_length=max_sequence_length,
|
| 280 |
+
truncation=True,
|
| 281 |
+
add_special_tokens=True,
|
| 282 |
+
return_tensors="pt",
|
| 283 |
+
)
|
| 284 |
+
text_input_ids = text_inputs.input_ids
|
| 285 |
+
untruncated_ids = self.tokenizer_3(
|
| 286 |
+
prompt, padding="longest", return_tensors="pt"
|
| 287 |
+
).input_ids
|
| 288 |
+
|
| 289 |
+
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(
|
| 290 |
+
text_input_ids, untruncated_ids
|
| 291 |
+
):
|
| 292 |
+
removed_text = self.tokenizer_3.batch_decode(
|
| 293 |
+
untruncated_ids[:, self.tokenizer_max_length - 1 : -1]
|
| 294 |
+
)
|
| 295 |
+
logger.warning(
|
| 296 |
+
"The following part of your input was truncated because `max_sequence_length` is set to "
|
| 297 |
+
f" {max_sequence_length} tokens: {removed_text}"
|
| 298 |
+
)
|
| 299 |
+
|
| 300 |
+
prompt_embeds = self.text_encoder_3(text_input_ids.to(device))[0]
|
| 301 |
+
|
| 302 |
+
dtype = self.text_encoder_3.dtype
|
| 303 |
+
prompt_embeds = prompt_embeds.to(dtype=dtype, device=device)
|
| 304 |
+
|
| 305 |
+
_, seq_len, _ = prompt_embeds.shape
|
| 306 |
+
|
| 307 |
+
# duplicate text embeddings and attention mask for each generation per prompt, using mps friendly method
|
| 308 |
+
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
| 309 |
+
prompt_embeds = prompt_embeds.view(
|
| 310 |
+
batch_size * num_images_per_prompt, seq_len, -1
|
| 311 |
+
)
|
| 312 |
+
|
| 313 |
+
return prompt_embeds
|
| 314 |
+
|
| 315 |
+
def _get_clip_prompt_embeds(
|
| 316 |
+
self,
|
| 317 |
+
prompt: Union[str, List[str]],
|
| 318 |
+
num_images_per_prompt: int = 1,
|
| 319 |
+
device: Optional[torch.device] = None,
|
| 320 |
+
clip_skip: Optional[int] = None,
|
| 321 |
+
clip_model_index: int = 0,
|
| 322 |
+
):
|
| 323 |
+
device = device or self._execution_device
|
| 324 |
+
|
| 325 |
+
clip_tokenizers = [self.tokenizer, self.tokenizer_2]
|
| 326 |
+
clip_text_encoders = [self.text_encoder, self.text_encoder_2]
|
| 327 |
+
|
| 328 |
+
tokenizer = clip_tokenizers[clip_model_index]
|
| 329 |
+
text_encoder = clip_text_encoders[clip_model_index]
|
| 330 |
+
|
| 331 |
+
prompt = [prompt] if isinstance(prompt, str) else prompt
|
| 332 |
+
batch_size = len(prompt)
|
| 333 |
+
|
| 334 |
+
text_inputs = tokenizer(
|
| 335 |
+
prompt,
|
| 336 |
+
padding="max_length",
|
| 337 |
+
max_length=self.tokenizer_max_length,
|
| 338 |
+
truncation=True,
|
| 339 |
+
return_tensors="pt",
|
| 340 |
+
)
|
| 341 |
+
|
| 342 |
+
text_input_ids = text_inputs.input_ids
|
| 343 |
+
untruncated_ids = tokenizer(
|
| 344 |
+
prompt, padding="longest", return_tensors="pt"
|
| 345 |
+
).input_ids
|
| 346 |
+
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(
|
| 347 |
+
text_input_ids, untruncated_ids
|
| 348 |
+
):
|
| 349 |
+
removed_text = tokenizer.batch_decode(
|
| 350 |
+
untruncated_ids[:, self.tokenizer_max_length - 1 : -1]
|
| 351 |
+
)
|
| 352 |
+
logger.warning(
|
| 353 |
+
"The following part of your input was truncated because CLIP can only handle sequences up to"
|
| 354 |
+
f" {self.tokenizer_max_length} tokens: {removed_text}"
|
| 355 |
+
)
|
| 356 |
+
prompt_embeds = text_encoder(
|
| 357 |
+
text_input_ids.to(device), output_hidden_states=True
|
| 358 |
+
)
|
| 359 |
+
pooled_prompt_embeds = prompt_embeds[0]
|
| 360 |
+
|
| 361 |
+
if clip_skip is None:
|
| 362 |
+
prompt_embeds = prompt_embeds.hidden_states[-2]
|
| 363 |
+
else:
|
| 364 |
+
prompt_embeds = prompt_embeds.hidden_states[-(clip_skip + 2)]
|
| 365 |
+
|
| 366 |
+
prompt_embeds = prompt_embeds.to(dtype=self.text_encoder.dtype, device=device)
|
| 367 |
+
|
| 368 |
+
_, seq_len, _ = prompt_embeds.shape
|
| 369 |
+
# duplicate text embeddings for each generation per prompt, using mps friendly method
|
| 370 |
+
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
| 371 |
+
prompt_embeds = prompt_embeds.view(
|
| 372 |
+
batch_size * num_images_per_prompt, seq_len, -1
|
| 373 |
+
)
|
| 374 |
+
|
| 375 |
+
pooled_prompt_embeds = pooled_prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
| 376 |
+
pooled_prompt_embeds = pooled_prompt_embeds.view(
|
| 377 |
+
batch_size * num_images_per_prompt, -1
|
| 378 |
+
)
|
| 379 |
+
|
| 380 |
+
return prompt_embeds, pooled_prompt_embeds
|
| 381 |
+
|
| 382 |
+
def encode_prompt(
|
| 383 |
+
self,
|
| 384 |
+
prompt: Union[str, List[str]],
|
| 385 |
+
prompt_2: Union[str, List[str]],
|
| 386 |
+
prompt_3: Union[str, List[str]],
|
| 387 |
+
device: Optional[torch.device] = None,
|
| 388 |
+
num_images_per_prompt: int = 1,
|
| 389 |
+
prompt_embeds: Optional[torch.FloatTensor] = None,
|
| 390 |
+
pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
| 391 |
+
clip_skip: Optional[int] = None,
|
| 392 |
+
max_sequence_length: int = 256,
|
| 393 |
+
):
|
| 394 |
+
r"""
|
| 395 |
+
|
| 396 |
+
Args:
|
| 397 |
+
prompt (`str` or `List[str]`, *optional*):
|
| 398 |
+
prompt to be encoded
|
| 399 |
+
prompt_2 (`str` or `List[str]`, *optional*):
|
| 400 |
+
The prompt or prompts to be sent to the `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
|
| 401 |
+
used in all text-encoders
|
| 402 |
+
prompt_3 (`str` or `List[str]`, *optional*):
|
| 403 |
+
The prompt or prompts to be sent to the `tokenizer_3` and `text_encoder_3`. If not defined, `prompt` is
|
| 404 |
+
used in all text-encoders
|
| 405 |
+
device: (`torch.device`):
|
| 406 |
+
torch device
|
| 407 |
+
num_images_per_prompt (`int`):
|
| 408 |
+
number of images that should be generated per prompt
|
| 409 |
+
do_classifier_free_guidance (`bool`):
|
| 410 |
+
whether to use classifier free guidance or not
|
| 411 |
+
negative_prompt (`str` or `List[str]`, *optional*):
|
| 412 |
+
The prompt or prompts not to guide the image generation. If not defined, one has to pass
|
| 413 |
+
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
|
| 414 |
+
less than `1`).
|
| 415 |
+
negative_prompt_2 (`str` or `List[str]`, *optional*):
|
| 416 |
+
The prompt or prompts not to guide the image generation to be sent to `tokenizer_2` and
|
| 417 |
+
`text_encoder_2`. If not defined, `negative_prompt` is used in all the text-encoders.
|
| 418 |
+
negative_prompt_3 (`str` or `List[str]`, *optional*):
|
| 419 |
+
The prompt or prompts not to guide the image generation to be sent to `tokenizer_3` and
|
| 420 |
+
`text_encoder_3`. If not defined, `negative_prompt` is used in all the text-encoders.
|
| 421 |
+
prompt_embeds (`torch.FloatTensor`, *optional*):
|
| 422 |
+
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
| 423 |
+
provided, text embeddings will be generated from `prompt` input argument.
|
| 424 |
+
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
|
| 425 |
+
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
| 426 |
+
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
|
| 427 |
+
argument.
|
| 428 |
+
pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
|
| 429 |
+
Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
|
| 430 |
+
If not provided, pooled text embeddings will be generated from `prompt` input argument.
|
| 431 |
+
negative_pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
|
| 432 |
+
Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
| 433 |
+
weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt`
|
| 434 |
+
input argument.
|
| 435 |
+
clip_skip (`int`, *optional*):
|
| 436 |
+
Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
|
| 437 |
+
the output of the pre-final layer will be used for computing the prompt embeddings.
|
| 438 |
+
lora_scale (`float`, *optional*):
|
| 439 |
+
A lora scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded.
|
| 440 |
+
"""
|
| 441 |
+
device = device or self._execution_device
|
| 442 |
+
|
| 443 |
+
prompt = [prompt] if isinstance(prompt, str) else prompt
|
| 444 |
+
if prompt is not None:
|
| 445 |
+
batch_size = len(prompt)
|
| 446 |
+
else:
|
| 447 |
+
batch_size = prompt_embeds.shape[0]
|
| 448 |
+
|
| 449 |
+
if prompt_embeds is None:
|
| 450 |
+
prompt_2 = prompt_2 or prompt
|
| 451 |
+
prompt_2 = [prompt_2] if isinstance(prompt_2, str) else prompt_2
|
| 452 |
+
|
| 453 |
+
prompt_3 = prompt_3 or prompt
|
| 454 |
+
prompt_3 = [prompt_3] if isinstance(prompt_3, str) else prompt_3
|
| 455 |
+
|
| 456 |
+
prompt_embed, pooled_prompt_embed = self._get_clip_prompt_embeds(
|
| 457 |
+
prompt=prompt,
|
| 458 |
+
device=device,
|
| 459 |
+
num_images_per_prompt=num_images_per_prompt,
|
| 460 |
+
clip_skip=clip_skip,
|
| 461 |
+
clip_model_index=0,
|
| 462 |
+
)
|
| 463 |
+
prompt_2_embed, pooled_prompt_2_embed = self._get_clip_prompt_embeds(
|
| 464 |
+
prompt=prompt_2,
|
| 465 |
+
device=device,
|
| 466 |
+
num_images_per_prompt=num_images_per_prompt,
|
| 467 |
+
clip_skip=clip_skip,
|
| 468 |
+
clip_model_index=1,
|
| 469 |
+
)
|
| 470 |
+
clip_prompt_embeds = torch.cat([prompt_embed, prompt_2_embed], dim=-1)
|
| 471 |
+
|
| 472 |
+
t5_prompt_embed = self._get_t5_prompt_embeds(
|
| 473 |
+
prompt=prompt_3,
|
| 474 |
+
num_images_per_prompt=num_images_per_prompt,
|
| 475 |
+
max_sequence_length=max_sequence_length,
|
| 476 |
+
device=device,
|
| 477 |
+
)
|
| 478 |
+
|
| 479 |
+
clip_prompt_embeds = torch.nn.functional.pad(
|
| 480 |
+
clip_prompt_embeds,
|
| 481 |
+
(0, t5_prompt_embed.shape[-1] - clip_prompt_embeds.shape[-1]),
|
| 482 |
+
)
|
| 483 |
+
|
| 484 |
+
prompt_embeds = torch.cat([clip_prompt_embeds, t5_prompt_embed], dim=-2)
|
| 485 |
+
pooled_prompt_embeds = torch.cat(
|
| 486 |
+
[pooled_prompt_embed, pooled_prompt_2_embed], dim=-1
|
| 487 |
+
)
|
| 488 |
+
|
| 489 |
+
return (
|
| 490 |
+
prompt_embeds,
|
| 491 |
+
pooled_prompt_embeds,
|
| 492 |
+
)
|
| 493 |
+
|
| 494 |
+
def check_inputs(
|
| 495 |
+
self,
|
| 496 |
+
prompt,
|
| 497 |
+
prompt_2,
|
| 498 |
+
prompt_3,
|
| 499 |
+
height,
|
| 500 |
+
width,
|
| 501 |
+
negative_prompt=None,
|
| 502 |
+
negative_prompt_2=None,
|
| 503 |
+
negative_prompt_3=None,
|
| 504 |
+
prompt_embeds=None,
|
| 505 |
+
negative_prompt_embeds=None,
|
| 506 |
+
pooled_prompt_embeds=None,
|
| 507 |
+
negative_pooled_prompt_embeds=None,
|
| 508 |
+
callback_on_step_end_tensor_inputs=None,
|
| 509 |
+
max_sequence_length=None,
|
| 510 |
+
):
|
| 511 |
+
if (
|
| 512 |
+
height % (self.vae_scale_factor * self.patch_size) != 0
|
| 513 |
+
or width % (self.vae_scale_factor * self.patch_size) != 0
|
| 514 |
+
):
|
| 515 |
+
raise ValueError(
|
| 516 |
+
f"`height` and `width` have to be divisible by {self.vae_scale_factor * self.patch_size} but are {height} and {width}."
|
| 517 |
+
f"You can use height {height - height % (self.vae_scale_factor * self.patch_size)} and width {width - width % (self.vae_scale_factor * self.patch_size)}."
|
| 518 |
+
)
|
| 519 |
+
|
| 520 |
+
if callback_on_step_end_tensor_inputs is not None and not all(
|
| 521 |
+
k in self._callback_tensor_inputs
|
| 522 |
+
for k in callback_on_step_end_tensor_inputs
|
| 523 |
+
):
|
| 524 |
+
raise ValueError(
|
| 525 |
+
f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
|
| 526 |
+
)
|
| 527 |
+
|
| 528 |
+
if prompt is not None and prompt_embeds is not None:
|
| 529 |
+
raise ValueError(
|
| 530 |
+
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
|
| 531 |
+
" only forward one of the two."
|
| 532 |
+
)
|
| 533 |
+
elif prompt_2 is not None and prompt_embeds is not None:
|
| 534 |
+
raise ValueError(
|
| 535 |
+
f"Cannot forward both `prompt_2`: {prompt_2} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
|
| 536 |
+
" only forward one of the two."
|
| 537 |
+
)
|
| 538 |
+
elif prompt_3 is not None and prompt_embeds is not None:
|
| 539 |
+
raise ValueError(
|
| 540 |
+
f"Cannot forward both `prompt_3`: {prompt_2} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
|
| 541 |
+
" only forward one of the two."
|
| 542 |
+
)
|
| 543 |
+
elif prompt is None and prompt_embeds is None:
|
| 544 |
+
raise ValueError(
|
| 545 |
+
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
|
| 546 |
+
)
|
| 547 |
+
elif prompt is not None and (
|
| 548 |
+
not isinstance(prompt, str) and not isinstance(prompt, list)
|
| 549 |
+
):
|
| 550 |
+
raise ValueError(
|
| 551 |
+
f"`prompt` has to be of type `str` or `list` but is {type(prompt)}"
|
| 552 |
+
)
|
| 553 |
+
elif prompt_2 is not None and (
|
| 554 |
+
not isinstance(prompt_2, str) and not isinstance(prompt_2, list)
|
| 555 |
+
):
|
| 556 |
+
raise ValueError(
|
| 557 |
+
f"`prompt_2` has to be of type `str` or `list` but is {type(prompt_2)}"
|
| 558 |
+
)
|
| 559 |
+
elif prompt_3 is not None and (
|
| 560 |
+
not isinstance(prompt_3, str) and not isinstance(prompt_3, list)
|
| 561 |
+
):
|
| 562 |
+
raise ValueError(
|
| 563 |
+
f"`prompt_3` has to be of type `str` or `list` but is {type(prompt_3)}"
|
| 564 |
+
)
|
| 565 |
+
|
| 566 |
+
if negative_prompt is not None and negative_prompt_embeds is not None:
|
| 567 |
+
raise ValueError(
|
| 568 |
+
f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
|
| 569 |
+
f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
|
| 570 |
+
)
|
| 571 |
+
elif negative_prompt_2 is not None and negative_prompt_embeds is not None:
|
| 572 |
+
raise ValueError(
|
| 573 |
+
f"Cannot forward both `negative_prompt_2`: {negative_prompt_2} and `negative_prompt_embeds`:"
|
| 574 |
+
f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
|
| 575 |
+
)
|
| 576 |
+
elif negative_prompt_3 is not None and negative_prompt_embeds is not None:
|
| 577 |
+
raise ValueError(
|
| 578 |
+
f"Cannot forward both `negative_prompt_3`: {negative_prompt_3} and `negative_prompt_embeds`:"
|
| 579 |
+
f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
|
| 580 |
+
)
|
| 581 |
+
|
| 582 |
+
if prompt_embeds is not None and negative_prompt_embeds is not None:
|
| 583 |
+
if prompt_embeds.shape != negative_prompt_embeds.shape:
|
| 584 |
+
raise ValueError(
|
| 585 |
+
"`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
|
| 586 |
+
f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
|
| 587 |
+
f" {negative_prompt_embeds.shape}."
|
| 588 |
+
)
|
| 589 |
+
|
| 590 |
+
if prompt_embeds is not None and pooled_prompt_embeds is None:
|
| 591 |
+
raise ValueError(
|
| 592 |
+
"If `prompt_embeds` are provided, `pooled_prompt_embeds` also have to be passed. Make sure to generate `pooled_prompt_embeds` from the same text encoder that was used to generate `prompt_embeds`."
|
| 593 |
+
)
|
| 594 |
+
|
| 595 |
+
if negative_prompt_embeds is not None and negative_pooled_prompt_embeds is None:
|
| 596 |
+
raise ValueError(
|
| 597 |
+
"If `negative_prompt_embeds` are provided, `negative_pooled_prompt_embeds` also have to be passed. Make sure to generate `negative_pooled_prompt_embeds` from the same text encoder that was used to generate `negative_prompt_embeds`."
|
| 598 |
+
)
|
| 599 |
+
|
| 600 |
+
if max_sequence_length is not None and max_sequence_length > 512:
|
| 601 |
+
raise ValueError(
|
| 602 |
+
f"`max_sequence_length` cannot be greater than 512 but is {max_sequence_length}"
|
| 603 |
+
)
|
| 604 |
+
|
| 605 |
+
def prepare_latents(
|
| 606 |
+
self,
|
| 607 |
+
batch_size,
|
| 608 |
+
num_channels_latents,
|
| 609 |
+
height,
|
| 610 |
+
width,
|
| 611 |
+
dtype,
|
| 612 |
+
device,
|
| 613 |
+
generator,
|
| 614 |
+
latents=None,
|
| 615 |
+
):
|
| 616 |
+
if latents is not None:
|
| 617 |
+
return latents.to(device=device, dtype=dtype)
|
| 618 |
+
|
| 619 |
+
shape = (
|
| 620 |
+
batch_size,
|
| 621 |
+
num_channels_latents,
|
| 622 |
+
int(height) // self.vae_scale_factor,
|
| 623 |
+
int(width) // self.vae_scale_factor,
|
| 624 |
+
)
|
| 625 |
+
|
| 626 |
+
if isinstance(generator, list) and len(generator) != batch_size:
|
| 627 |
+
raise ValueError(
|
| 628 |
+
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
|
| 629 |
+
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
|
| 630 |
+
)
|
| 631 |
+
|
| 632 |
+
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
|
| 633 |
+
|
| 634 |
+
return latents
|
| 635 |
+
|
| 636 |
+
@property
|
| 637 |
+
def guidance_scale(self):
|
| 638 |
+
return self._guidance_scale
|
| 639 |
+
|
| 640 |
+
@property
|
| 641 |
+
def skip_guidance_layers(self):
|
| 642 |
+
return self._skip_guidance_layers
|
| 643 |
+
|
| 644 |
+
@property
|
| 645 |
+
def clip_skip(self):
|
| 646 |
+
return self._clip_skip
|
| 647 |
+
|
| 648 |
+
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
| 649 |
+
# of the Imagen paper: https://huggingface.co/papers/2205.11487 . `guidance_scale = 1`
|
| 650 |
+
# corresponds to doing no classifier free guidance.
|
| 651 |
+
@property
|
| 652 |
+
def do_classifier_free_guidance(self):
|
| 653 |
+
return self._guidance_scale > 1
|
| 654 |
+
|
| 655 |
+
@property
|
| 656 |
+
def joint_attention_kwargs(self):
|
| 657 |
+
return self._joint_attention_kwargs
|
| 658 |
+
|
| 659 |
+
@property
|
| 660 |
+
def num_timesteps(self):
|
| 661 |
+
return self._num_timesteps
|
| 662 |
+
|
| 663 |
+
@property
|
| 664 |
+
def interrupt(self):
|
| 665 |
+
return self._interrupt
|
| 666 |
+
|
| 667 |
+
# Adapted from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_xl.StableDiffusionXLPipeline.encode_image
|
| 668 |
+
|
| 669 |
+
def enable_sequential_cpu_offload(self, *args, **kwargs):
|
| 670 |
+
if (
|
| 671 |
+
self.image_encoder is not None
|
| 672 |
+
and "image_encoder" not in self._exclude_from_cpu_offload
|
| 673 |
+
):
|
| 674 |
+
logger.warning(
|
| 675 |
+
"`pipe.enable_sequential_cpu_offload()` might fail for `image_encoder` if it uses "
|
| 676 |
+
"`torch.nn.MultiheadAttention`. You can exclude `image_encoder` from CPU offloading by calling "
|
| 677 |
+
"`pipe._exclude_from_cpu_offload.append('image_encoder')` before `pipe.enable_sequential_cpu_offload()`."
|
| 678 |
+
)
|
| 679 |
+
|
| 680 |
+
super().enable_sequential_cpu_offload(*args, **kwargs)
|
| 681 |
+
|
| 682 |
+
@torch.no_grad()
|
| 683 |
+
@replace_example_docstring(EXAMPLE_DOC_STRING)
|
| 684 |
+
def __call__(
|
| 685 |
+
self,
|
| 686 |
+
prompt: Union[str, List[str]] = None,
|
| 687 |
+
prompt_2: Optional[Union[str, List[str]]] = None,
|
| 688 |
+
prompt_3: Optional[Union[str, List[str]]] = None,
|
| 689 |
+
height: Optional[int] = None,
|
| 690 |
+
width: Optional[int] = None,
|
| 691 |
+
num_inference_steps: int = 28,
|
| 692 |
+
guidance_scale: float = 1.0,
|
| 693 |
+
num_images_per_prompt: Optional[int] = 1,
|
| 694 |
+
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
| 695 |
+
latents: Optional[torch.FloatTensor] = None,
|
| 696 |
+
output_type: Optional[str] = "pil",
|
| 697 |
+
return_dict: bool = True,
|
| 698 |
+
callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
|
| 699 |
+
callback_on_step_end_tensor_inputs: List[str] = ["latents"],
|
| 700 |
+
max_sequence_length: int = 256,
|
| 701 |
+
use_sd3_shift: bool = False,
|
| 702 |
+
noise_type: str = 'fresh', # 'fresh', 'ddim', 'fixed'
|
| 703 |
+
):
|
| 704 |
+
height = height or self.default_sample_size * self.vae_scale_factor
|
| 705 |
+
width = width or self.default_sample_size * self.vae_scale_factor
|
| 706 |
+
|
| 707 |
+
if isinstance(callback_on_step_end, (PipelineCallback, MultiPipelineCallbacks)):
|
| 708 |
+
callback_on_step_end_tensor_inputs = callback_on_step_end.tensor_inputs
|
| 709 |
+
|
| 710 |
+
# 1. Check inputs. Raise error if not correct
|
| 711 |
+
self.check_inputs(
|
| 712 |
+
prompt,
|
| 713 |
+
prompt_2,
|
| 714 |
+
prompt_3,
|
| 715 |
+
height,
|
| 716 |
+
width,
|
| 717 |
+
prompt_embeds=prompt_embeds,
|
| 718 |
+
pooled_prompt_embeds=pooled_prompt_embeds,
|
| 719 |
+
callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs,
|
| 720 |
+
max_sequence_length=max_sequence_length,
|
| 721 |
+
)
|
| 722 |
+
|
| 723 |
+
self._guidance_scale = guidance_scale
|
| 724 |
+
self._interrupt = False
|
| 725 |
+
|
| 726 |
+
# 2. Define call parameters
|
| 727 |
+
if prompt is not None and isinstance(prompt, str):
|
| 728 |
+
batch_size = 1
|
| 729 |
+
elif prompt is not None and isinstance(prompt, list):
|
| 730 |
+
batch_size = len(prompt)
|
| 731 |
+
else:
|
| 732 |
+
batch_size = prompt_embeds.shape[0]
|
| 733 |
+
|
| 734 |
+
device = self._execution_device
|
| 735 |
+
|
| 736 |
+
(
|
| 737 |
+
prompt_embeds,
|
| 738 |
+
pooled_prompt_embeds,
|
| 739 |
+
) = self.encode_prompt(
|
| 740 |
+
prompt,
|
| 741 |
+
prompt_2,
|
| 742 |
+
prompt_3,
|
| 743 |
+
prompt_embeds=prompt_embeds,
|
| 744 |
+
pooled_prompt_embeds=pooled_prompt_embeds,
|
| 745 |
+
device=device,
|
| 746 |
+
num_images_per_prompt=num_images_per_prompt,
|
| 747 |
+
max_sequence_length=max_sequence_length,
|
| 748 |
+
)
|
| 749 |
+
# 3. Prepare latents
|
| 750 |
+
num_channels_latents = self.transformer.config.in_channels
|
| 751 |
+
latents = self.prepare_latents(
|
| 752 |
+
batch_size * num_images_per_prompt,
|
| 753 |
+
num_channels_latents,
|
| 754 |
+
height,
|
| 755 |
+
width,
|
| 756 |
+
prompt_embeds.dtype,
|
| 757 |
+
device,
|
| 758 |
+
generator,
|
| 759 |
+
latents,
|
| 760 |
+
)
|
| 761 |
+
|
| 762 |
+
# 4. SiD sampling loop
|
| 763 |
+
# Initialize D_x
|
| 764 |
+
D_x = torch.zeros_like(latents).to(latents.device)
|
| 765 |
+
# Use fixed noise for now (can be extended as needed)
|
| 766 |
+
initial_latents = latents.clone()
|
| 767 |
+
for i in range(num_inference_steps):
|
| 768 |
+
if noise_type == 'fresh':
|
| 769 |
+
noise = latents if i == 0 else torch.randn_like(latents).to(latents.device)
|
| 770 |
+
elif noise_type=='ddim':
|
| 771 |
+
noise = latents if i == 0 else ((latents - (1.0 - t) * D_x) / t).detach()
|
| 772 |
+
elif noise_type == 'fixed':
|
| 773 |
+
noise = initial_latents # Use the initial, unmodified latents
|
| 774 |
+
else:
|
| 775 |
+
raise ValueError(f"Unknown noise_type: {noise_type}")
|
| 776 |
+
|
| 777 |
+
# Compute t value, normalized to [0, 1]
|
| 778 |
+
t_val = 1.0 - float(i) / float(num_inference_steps)
|
| 779 |
+
if use_sd3_shift:
|
| 780 |
+
shift = 3.0
|
| 781 |
+
t_val = shift * t_val / (1 + (shift - 1) * t_val)
|
| 782 |
+
t = torch.full((latents.shape[0],), t_val, device=latents.device, dtype=latents.dtype)
|
| 783 |
+
t_flatten = t.flatten()
|
| 784 |
+
if t.numel() > 1:
|
| 785 |
+
t_view = t.view(-1, 1, 1, 1)
|
| 786 |
+
else:
|
| 787 |
+
t_view = t
|
| 788 |
+
# SiD update
|
| 789 |
+
latents = (1.0 - t_view) * D_x + t_view * noise
|
| 790 |
+
flow_pred = self.transformer(
|
| 791 |
+
hidden_states=latents,
|
| 792 |
+
encoder_hidden_states=prompt_embeds,
|
| 793 |
+
pooled_projections=pooled_prompt_embeds,
|
| 794 |
+
timestep=t_flatten,
|
| 795 |
+
return_dict=False,
|
| 796 |
+
)[0]
|
| 797 |
+
D_x = latents - t_view * flow_pred
|
| 798 |
+
|
| 799 |
+
# 5. Decode latent to image
|
| 800 |
+
image = self.vae.decode((D_x / self.vae.config.scaling_factor) + self.vae.config.shift_factor, return_dict=False)[0]
|
| 801 |
+
|
| 802 |
+
# 6. Return output
|
| 803 |
+
if not return_dict:
|
| 804 |
+
return (image,)
|
| 805 |
+
|
| 806 |
+
return SiDPipelineOutput(images=image)
|