Spaces:
Runtime error
Runtime error
| import json | |
| from collections import defaultdict | |
| from contextlib import contextmanager | |
| from pathlib import Path | |
| from time import time | |
| import numpy as np | |
| import torch | |
| class Benchmarker: | |
| def __init__(self): | |
| self.execution_times = defaultdict(list) | |
| def time(self, tag: str, num_calls: int = 1): | |
| try: | |
| start_time = time() | |
| yield | |
| finally: | |
| end_time = time() | |
| for _ in range(num_calls): | |
| self.execution_times[tag].append((end_time - start_time) / num_calls) | |
| def dump(self, path: Path) -> None: | |
| path.parent.mkdir(exist_ok=True, parents=True) | |
| with path.open("w") as f: | |
| json.dump(dict(self.execution_times), f) | |
| def dump_memory(self, path: Path) -> None: | |
| path.parent.mkdir(exist_ok=True, parents=True) | |
| with path.open("w") as f: | |
| json.dump(torch.cuda.memory_stats()["allocated_bytes.all.peak"], f) | |
| def summarize(self) -> None: | |
| for tag, times in self.execution_times.items(): | |
| print(f"{tag}: {len(times)} calls, avg. {np.mean(times)} seconds per call") | |