Spaces:
Running
Running
import torch.nn.functional as F | |
def compute_tensor_iu(seg, gt): | |
intersection = (seg & gt).float().sum() | |
union = (seg | gt).float().sum() | |
return intersection, union | |
def compute_tensor_iou(seg, gt): | |
intersection, union = compute_tensor_iu(seg, gt) | |
iou = (intersection + 1e-6) / (union + 1e-6) | |
return iou | |
# STM | |
def pad_divide_by(in_img, d): | |
h, w = in_img.shape[-2:] | |
if h % d > 0: | |
new_h = h + d - h % d | |
else: | |
new_h = h | |
if w % d > 0: | |
new_w = w + d - w % d | |
else: | |
new_w = w | |
lh, uh = int((new_h - h) / 2), int(new_h - h) - int((new_h - h) / 2) | |
lw, uw = int((new_w - w) / 2), int(new_w - w) - int((new_w - w) / 2) | |
pad_array = (int(lw), int(uw), int(lh), int(uh)) | |
out = F.pad(in_img, pad_array) | |
return out, pad_array | |
def unpad(img, pad): | |
if len(img.shape) == 4: | |
if pad[2] + pad[3] > 0: | |
img = img[:, :, pad[2] : -pad[3], :] | |
if pad[0] + pad[1] > 0: | |
img = img[:, :, :, pad[0] : -pad[1]] | |
elif len(img.shape) == 3: | |
if pad[2] + pad[3] > 0: | |
img = img[:, pad[2] : -pad[3], :] | |
if pad[0] + pad[1] > 0: | |
img = img[:, :, pad[0] : -pad[1]] | |
else: | |
raise NotImplementedError | |
return img | |