Spaces:
Running
Running
""" | |
This file defines XMem, the highest level nn.Module interface | |
During training, it is used by trainer.py | |
During evaluation, it is used by inference_core.py | |
It further depends on modules.py which gives more detailed implementations of sub-modules | |
""" | |
import torch | |
import torch.nn as nn | |
from model.aggregate import aggregate | |
from model.modules import * | |
from model.memory_util import * | |
class XMem(nn.Module): | |
def __init__(self, config, model_path=None, map_location=None): | |
""" | |
model_path/map_location are used in evaluation only | |
map_location is for converting models saved in cuda to cpu | |
""" | |
super().__init__() | |
model_weights = self.init_hyperparameters(config, model_path, map_location) | |
self.single_object = config.get("single_object", False) | |
print(f"Single object mode: {self.single_object}") | |
self.key_encoder = KeyEncoder() | |
self.value_encoder = ValueEncoder( | |
self.value_dim, self.hidden_dim, self.single_object | |
) | |
# Projection from f16 feature space to key/value space | |
self.key_proj = KeyProjection(1024, self.key_dim) | |
self.decoder = Decoder(self.value_dim, self.hidden_dim) | |
if model_weights is not None: | |
self.load_weights(model_weights, init_as_zero_if_needed=True) | |
def encode_key(self, frame, need_sk=True, need_ek=True): | |
# Determine input shape | |
if len(frame.shape) == 5: | |
# shape is b*t*c*h*w | |
need_reshape = True | |
b, t = frame.shape[:2] | |
# flatten so that we can feed them into a 2D CNN | |
frame = frame.flatten(start_dim=0, end_dim=1) | |
elif len(frame.shape) == 4: | |
# shape is b*c*h*w | |
need_reshape = False | |
else: | |
raise NotImplementedError | |
f16, f8, f4 = self.key_encoder(frame) | |
key, shrinkage, selection = self.key_proj(f16, need_sk, need_ek) | |
if need_reshape: | |
# B*C*T*H*W | |
key = key.view(b, t, *key.shape[-3:]).transpose(1, 2).contiguous() | |
if shrinkage is not None: | |
shrinkage = ( | |
shrinkage.view(b, t, *shrinkage.shape[-3:]) | |
.transpose(1, 2) | |
.contiguous() | |
) | |
if selection is not None: | |
selection = ( | |
selection.view(b, t, *selection.shape[-3:]) | |
.transpose(1, 2) | |
.contiguous() | |
) | |
# B*T*C*H*W | |
f16 = f16.view(b, t, *f16.shape[-3:]) | |
f8 = f8.view(b, t, *f8.shape[-3:]) | |
f4 = f4.view(b, t, *f4.shape[-3:]) | |
return key, shrinkage, selection, f16, f8, f4 | |
def encode_value(self, frame, image_feat_f16, h16, masks, is_deep_update=True): | |
num_objects = masks.shape[1] | |
if num_objects != 1: | |
others = torch.cat( | |
[ | |
torch.sum( | |
masks[:, [j for j in range(num_objects) if i != j]], | |
dim=1, | |
keepdim=True, | |
) | |
for i in range(num_objects) | |
], | |
1, | |
) | |
else: | |
others = torch.zeros_like(masks) | |
g16, h16 = self.value_encoder( | |
frame, image_feat_f16, h16, masks, others, is_deep_update | |
) | |
return g16, h16 | |
# Used in training only. | |
# This step is replaced by MemoryManager in test time | |
def read_memory( | |
self, query_key, query_selection, memory_key, memory_shrinkage, memory_value | |
): | |
""" | |
query_key : B * CK * H * W | |
query_selection : B * CK * H * W | |
memory_key : B * CK * T * H * W | |
memory_shrinkage: B * 1 * T * H * W | |
memory_value : B * num_objects * CV * T * H * W | |
""" | |
batch_size, num_objects = memory_value.shape[:2] | |
memory_value = memory_value.flatten(start_dim=1, end_dim=2) | |
affinity = get_affinity( | |
memory_key, memory_shrinkage, query_key, query_selection | |
) | |
memory = readout(affinity, memory_value) | |
memory = memory.view( | |
batch_size, num_objects, self.value_dim, *memory.shape[-2:] | |
) | |
return memory | |
def segment( | |
self, | |
multi_scale_features, | |
memory_readout, | |
hidden_state, | |
selector=None, | |
h_out=True, | |
strip_bg=True, | |
): | |
hidden_state, logits = self.decoder( | |
*multi_scale_features, hidden_state, memory_readout, h_out=h_out | |
) | |
prob = torch.sigmoid(logits) | |
if selector is not None: | |
prob = prob * selector | |
logits, prob = aggregate(prob, dim=1, return_logits=True) | |
if strip_bg: | |
# Strip away the background | |
prob = prob[:, 1:] | |
return hidden_state, logits, prob | |
def forward(self, mode, *args, **kwargs): | |
if mode == "encode_key": | |
return self.encode_key(*args, **kwargs) | |
elif mode == "encode_value": | |
return self.encode_value(*args, **kwargs) | |
elif mode == "read_memory": | |
return self.read_memory(*args, **kwargs) | |
elif mode == "segment": | |
return self.segment(*args, **kwargs) | |
else: | |
raise NotImplementedError | |
def init_hyperparameters(self, config, model_path=None, map_location=None): | |
""" | |
Init three hyperparameters: key_dim, value_dim, and hidden_dim | |
If model_path is provided, we load these from the model weights | |
The actual parameters are then updated to the config in-place | |
Otherwise we load it either from the config or default | |
""" | |
if model_path is not None: | |
# load the model and key/value/hidden dimensions with some hacks | |
# config is updated with the loaded parameters | |
model_weights = torch.load(model_path, map_location=map_location) | |
self.key_dim = model_weights["key_proj.key_proj.weight"].shape[0] | |
self.value_dim = model_weights[ | |
"value_encoder.fuser.block2.conv2.weight" | |
].shape[0] | |
self.disable_hidden = ( | |
"decoder.hidden_update.transform.weight" not in model_weights | |
) | |
if self.disable_hidden: | |
self.hidden_dim = 0 | |
else: | |
self.hidden_dim = ( | |
model_weights["decoder.hidden_update.transform.weight"].shape[0] | |
// 3 | |
) | |
print( | |
f"Hyperparameters read from the model weights: " | |
f"C^k={self.key_dim}, C^v={self.value_dim}, C^h={self.hidden_dim}" | |
) | |
else: | |
model_weights = None | |
# load dimensions from config or default | |
if "key_dim" not in config: | |
self.key_dim = 64 | |
print(f"key_dim not found in config. Set to default {self.key_dim}") | |
else: | |
self.key_dim = config["key_dim"] | |
if "value_dim" not in config: | |
self.value_dim = 512 | |
print(f"value_dim not found in config. Set to default {self.value_dim}") | |
else: | |
self.value_dim = config["value_dim"] | |
if "hidden_dim" not in config: | |
self.hidden_dim = 64 | |
print( | |
f"hidden_dim not found in config. Set to default {self.hidden_dim}" | |
) | |
else: | |
self.hidden_dim = config["hidden_dim"] | |
self.disable_hidden = self.hidden_dim <= 0 | |
config["key_dim"] = self.key_dim | |
config["value_dim"] = self.value_dim | |
config["hidden_dim"] = self.hidden_dim | |
return model_weights | |
def load_weights(self, src_dict, init_as_zero_if_needed=False): | |
# Maps SO weight (without other_mask) to MO weight (with other_mask) | |
for k in list(src_dict.keys()): | |
if k == "value_encoder.conv1.weight": | |
if src_dict[k].shape[1] == 4: | |
print("Converting weights from single object to multiple objects.") | |
pads = torch.zeros((64, 1, 7, 7), device=src_dict[k].device) | |
if not init_as_zero_if_needed: | |
print("Randomly initialized padding.") | |
nn.init.orthogonal_(pads) | |
else: | |
print("Zero-initialized padding.") | |
src_dict[k] = torch.cat([src_dict[k], pads], 1) | |
self.load_state_dict(src_dict) | |