Spaces:
Sleeping
Sleeping
# import for debugging | |
import os | |
import glob | |
import numpy as np | |
from PIL import Image | |
# import for base_tracker | |
import torch | |
import yaml | |
import torch.nn.functional as F | |
from tracker.model.network import XMem | |
from inference.inference_core import InferenceCore | |
from tracker.util.mask_mapper import MaskMapper | |
from torchvision import transforms | |
from tracker.util.range_transform import im_normalization | |
from utils.painter import mask_painter | |
dir_path = os.path.dirname(os.path.realpath(__file__)) | |
class BaseTracker: | |
def __init__( | |
self, xmem_checkpoint, device, sam_model=None, model_type=None | |
) -> None: | |
""" | |
device: model device | |
xmem_checkpoint: checkpoint of XMem model | |
""" | |
# load configurations | |
with open(f"{dir_path}/config/config.yaml", "r") as stream: | |
config = yaml.safe_load(stream) | |
# initialise XMem | |
network = XMem(config, xmem_checkpoint, map_location=device).eval() | |
# initialise IncerenceCore | |
self.tracker = InferenceCore(network, config) | |
# data transformation | |
self.im_transform = transforms.Compose( | |
[ | |
transforms.ToTensor(), | |
im_normalization, | |
] | |
) | |
self.device = device | |
# changable properties | |
self.mapper = MaskMapper() | |
self.initialised = False | |
# # SAM-based refinement | |
# self.sam_model = sam_model | |
# self.resizer = Resize([256, 256]) | |
def resize_mask(self, mask): | |
# mask transform is applied AFTER mapper, so we need to post-process it in eval.py | |
h, w = mask.shape[-2:] | |
min_hw = min(h, w) | |
return F.interpolate( | |
mask, | |
(int(h / min_hw * self.size), int(w / min_hw * self.size)), | |
mode="nearest", | |
) | |
def track(self, frame, first_frame_annotation=None): | |
""" | |
Input: | |
frames: numpy arrays (H, W, 3) | |
logit: numpy array (H, W), logit | |
Output: | |
mask: numpy arrays (H, W) | |
logit: numpy arrays, probability map (H, W) | |
painted_image: numpy array (H, W, 3) | |
""" | |
if first_frame_annotation is not None: # first frame mask | |
# initialisation | |
mask, labels = self.mapper.convert_mask(first_frame_annotation) | |
mask = torch.Tensor(mask).to(self.device) | |
self.tracker.set_all_labels(list(self.mapper.remappings.values())) | |
else: | |
mask = None | |
labels = None | |
# prepare inputs | |
frame_tensor = self.im_transform(frame).to(self.device) | |
# track one frame | |
probs, _ = self.tracker.step(frame_tensor, mask, labels) # logits 2 (bg fg) H W | |
# # refine | |
# if first_frame_annotation is None: | |
# out_mask = self.sam_refinement(frame, logits[1], ti) | |
# convert to mask | |
out_mask = torch.argmax(probs, dim=0) | |
out_mask = (out_mask.detach().cpu().numpy()).astype(np.uint8) | |
final_mask = np.zeros_like(out_mask) | |
# map back | |
for k, v in self.mapper.remappings.items(): | |
final_mask[out_mask == v] = k | |
num_objs = final_mask.max() | |
painted_image = frame | |
for obj in range(1, num_objs + 1): | |
if np.max(final_mask == obj) == 0: | |
continue | |
painted_image = mask_painter( | |
painted_image, (final_mask == obj).astype("uint8"), mask_color=obj + 1 | |
) | |
# print(f'max memory allocated: {torch.cuda.max_memory_allocated()/(2**20)} MB') | |
return final_mask, final_mask, painted_image | |
def sam_refinement(self, frame, logits, ti): | |
""" | |
refine segmentation results with mask prompt | |
""" | |
# convert to 1, 256, 256 | |
self.sam_model.set_image(frame) | |
mode = "mask" | |
logits = logits.unsqueeze(0) | |
logits = self.resizer(logits).cpu().numpy() | |
prompts = {"mask_input": logits} # 1 256 256 | |
masks, scores, logits = self.sam_model.predict( | |
prompts, mode, multimask=True | |
) # masks (n, h, w), scores (n,), logits (n, 256, 256) | |
painted_image = mask_painter( | |
frame, masks[np.argmax(scores)].astype("uint8"), mask_alpha=0.8 | |
) | |
painted_image = Image.fromarray(painted_image) | |
painted_image.save(f"/ssd1/gaomingqi/refine/{ti:05d}.png") | |
self.sam_model.reset_image() | |
def clear_memory(self): | |
self.tracker.clear_memory() | |
self.mapper.clear_labels() | |
torch.cuda.empty_cache() | |