Spaces:
Running
Running
Upload app.py
Browse files
app.py
CHANGED
@@ -1,5 +1,13 @@
|
|
1 |
-
import os,re
|
2 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
|
4 |
gpt_path = os.environ.get(
|
5 |
"gpt_path", "models/Taffy/Taffy-e5.ckpt"
|
@@ -49,7 +57,6 @@ else:
|
|
49 |
bert_model = bert_model.to(device)
|
50 |
|
51 |
|
52 |
-
# bert_model=bert_model.to(device)
|
53 |
def get_bert_feature(text, word2ph):
|
54 |
with torch.no_grad():
|
55 |
inputs = tokenizer(text, return_tensors="pt")
|
@@ -63,15 +70,8 @@ def get_bert_feature(text, word2ph):
|
|
63 |
repeat_feature = res[i].repeat(word2ph[i], 1)
|
64 |
phone_level_feature.append(repeat_feature)
|
65 |
phone_level_feature = torch.cat(phone_level_feature, dim=0)
|
66 |
-
# if(is_half==True):phone_level_feature=phone_level_feature.half()
|
67 |
return phone_level_feature.T
|
68 |
|
69 |
-
|
70 |
-
n_semantic = 1024
|
71 |
-
|
72 |
-
dict_s2=torch.load(sovits_path,map_location="cpu")
|
73 |
-
hps=dict_s2["config"]
|
74 |
-
|
75 |
class DictToAttrRecursive(dict):
|
76 |
def __init__(self, input_dict):
|
77 |
super().__init__(input_dict)
|
@@ -99,12 +99,6 @@ class DictToAttrRecursive(dict):
|
|
99 |
except KeyError:
|
100 |
raise AttributeError(f"Attribute {item} not found")
|
101 |
|
102 |
-
|
103 |
-
hps = DictToAttrRecursive(hps)
|
104 |
-
|
105 |
-
hps.model.semantic_frame_rate = "25hz"
|
106 |
-
dict_s1 = torch.load(gpt_path, map_location="cpu")
|
107 |
-
config = dict_s1["config"]
|
108 |
ssl_model = cnhubert.get_model()
|
109 |
if is_half == True:
|
110 |
ssl_model = ssl_model.half().to(device)
|
@@ -123,7 +117,8 @@ def change_sovits_weights(sovits_path):
|
|
123 |
n_speakers=hps.data.n_speakers,
|
124 |
**hps.model
|
125 |
)
|
126 |
-
|
|
|
127 |
if is_half == True:
|
128 |
vq_model = vq_model.half().to(device)
|
129 |
else:
|
@@ -165,10 +160,88 @@ def get_spepc(hps, filename):
|
|
165 |
return spec
|
166 |
|
167 |
|
168 |
-
dict_language
|
169 |
-
|
170 |
-
|
171 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
172 |
ref_wav_path = text_to_audio_mappings.get(selected_text, "")
|
173 |
if not ref_wav_path:
|
174 |
print("Audio file not found for the selected text.")
|
@@ -201,28 +274,37 @@ def get_tts_wav(selected_text, prompt_text, prompt_language, text, text_language
|
|
201 |
t1 = ttime()
|
202 |
prompt_language = dict_language[prompt_language]
|
203 |
text_language = dict_language[text_language]
|
204 |
-
|
205 |
-
|
206 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
207 |
audio_opt = []
|
|
|
|
|
|
|
|
|
208 |
|
209 |
for text in texts:
|
210 |
# 解决输入目标文本的空行导致报错的问题
|
211 |
if (len(text.strip()) == 0):
|
212 |
continue
|
213 |
-
|
214 |
-
|
215 |
-
if prompt_language == "zh":
|
216 |
-
bert1 = get_bert_feature(norm_text1, word2ph1).to(device)
|
217 |
else:
|
218 |
-
|
219 |
-
|
220 |
-
|
221 |
-
|
222 |
-
if text_language == "zh":
|
223 |
-
bert2 = get_bert_feature(norm_text2, word2ph2).to(device)
|
224 |
else:
|
225 |
-
bert2 =
|
226 |
bert = torch.cat([bert1, bert2], 1)
|
227 |
|
228 |
all_phoneme_ids = torch.LongTensor(phones1 + phones2).to(device).unsqueeze(0)
|
@@ -380,7 +462,7 @@ with gr.Blocks(title="GPT-SoVITS WebUI") as app:
|
|
380 |
### <center>⚠️在线端不稳定且生成速度较慢,强烈建议下载模型本地推理!\n
|
381 |
""")
|
382 |
# with gr.Tabs():
|
383 |
-
|
384 |
with gr.Group():
|
385 |
gr.Markdown(value="*参考音频选择(必选)")
|
386 |
with gr.Row():
|
|
|
1 |
+
import os,re,logging
|
2 |
+
logging.getLogger("markdown_it").setLevel(logging.ERROR)
|
3 |
+
logging.getLogger("urllib3").setLevel(logging.ERROR)
|
4 |
+
logging.getLogger("httpcore").setLevel(logging.ERROR)
|
5 |
+
logging.getLogger("httpx").setLevel(logging.ERROR)
|
6 |
+
logging.getLogger("asyncio").setLevel(logging.ERROR)
|
7 |
+
|
8 |
+
logging.getLogger("charset_normalizer").setLevel(logging.ERROR)
|
9 |
+
logging.getLogger("torchaudio._extension").setLevel(logging.ERROR)
|
10 |
+
import pdb
|
11 |
|
12 |
gpt_path = os.environ.get(
|
13 |
"gpt_path", "models/Taffy/Taffy-e5.ckpt"
|
|
|
57 |
bert_model = bert_model.to(device)
|
58 |
|
59 |
|
|
|
60 |
def get_bert_feature(text, word2ph):
|
61 |
with torch.no_grad():
|
62 |
inputs = tokenizer(text, return_tensors="pt")
|
|
|
70 |
repeat_feature = res[i].repeat(word2ph[i], 1)
|
71 |
phone_level_feature.append(repeat_feature)
|
72 |
phone_level_feature = torch.cat(phone_level_feature, dim=0)
|
|
|
73 |
return phone_level_feature.T
|
74 |
|
|
|
|
|
|
|
|
|
|
|
|
|
75 |
class DictToAttrRecursive(dict):
|
76 |
def __init__(self, input_dict):
|
77 |
super().__init__(input_dict)
|
|
|
99 |
except KeyError:
|
100 |
raise AttributeError(f"Attribute {item} not found")
|
101 |
|
|
|
|
|
|
|
|
|
|
|
|
|
102 |
ssl_model = cnhubert.get_model()
|
103 |
if is_half == True:
|
104 |
ssl_model = ssl_model.half().to(device)
|
|
|
117 |
n_speakers=hps.data.n_speakers,
|
118 |
**hps.model
|
119 |
)
|
120 |
+
if("pretrained"not in sovits_path):
|
121 |
+
del vq_model.enc_q
|
122 |
if is_half == True:
|
123 |
vq_model = vq_model.half().to(device)
|
124 |
else:
|
|
|
160 |
return spec
|
161 |
|
162 |
|
163 |
+
dict_language={
|
164 |
+
("中文"):"zh",
|
165 |
+
("英文"):"en",
|
166 |
+
("日文"):"ja"
|
167 |
+
}
|
168 |
+
|
169 |
+
|
170 |
+
def splite_en_inf(sentence, language):
|
171 |
+
pattern = re.compile(r'[a-zA-Z. ]+')
|
172 |
+
textlist = []
|
173 |
+
langlist = []
|
174 |
+
pos = 0
|
175 |
+
for match in pattern.finditer(sentence):
|
176 |
+
start, end = match.span()
|
177 |
+
if start > pos:
|
178 |
+
textlist.append(sentence[pos:start])
|
179 |
+
langlist.append(language)
|
180 |
+
textlist.append(sentence[start:end])
|
181 |
+
langlist.append("en")
|
182 |
+
pos = end
|
183 |
+
if pos < len(sentence):
|
184 |
+
textlist.append(sentence[pos:])
|
185 |
+
langlist.append(language)
|
186 |
+
|
187 |
+
return textlist, langlist
|
188 |
+
|
189 |
+
|
190 |
+
def clean_text_inf(text, language):
|
191 |
+
phones, word2ph, norm_text = clean_text(text, language)
|
192 |
+
phones = cleaned_text_to_sequence(phones)
|
193 |
+
|
194 |
+
return phones, word2ph, norm_text
|
195 |
+
def get_bert_inf(phones, word2ph, norm_text, language):
|
196 |
+
if language == "zh":
|
197 |
+
bert = get_bert_feature(norm_text, word2ph).to(device)
|
198 |
+
else:
|
199 |
+
bert = torch.zeros(
|
200 |
+
(1024, len(phones)),
|
201 |
+
dtype=torch.float16 if is_half == True else torch.float32,
|
202 |
+
).to(device)
|
203 |
+
|
204 |
+
return bert
|
205 |
+
|
206 |
+
|
207 |
+
def nonen_clean_text_inf(text, language):
|
208 |
+
textlist, langlist = splite_en_inf(text, language)
|
209 |
+
phones_list = []
|
210 |
+
word2ph_list = []
|
211 |
+
norm_text_list = []
|
212 |
+
for i in range(len(textlist)):
|
213 |
+
lang = langlist[i]
|
214 |
+
phones, word2ph, norm_text = clean_text_inf(textlist[i], lang)
|
215 |
+
phones_list.append(phones)
|
216 |
+
if lang == "en" or "ja":
|
217 |
+
pass
|
218 |
+
else:
|
219 |
+
word2ph_list.append(word2ph)
|
220 |
+
norm_text_list.append(norm_text)
|
221 |
+
print(word2ph_list)
|
222 |
+
phones = sum(phones_list, [])
|
223 |
+
word2ph = sum(word2ph_list, [])
|
224 |
+
norm_text = ' '.join(norm_text_list)
|
225 |
+
|
226 |
+
return phones, word2ph, norm_text
|
227 |
+
|
228 |
+
|
229 |
+
def nonen_get_bert_inf(text, language):
|
230 |
+
textlist, langlist = splite_en_inf(text, language)
|
231 |
+
print(textlist)
|
232 |
+
print(langlist)
|
233 |
+
bert_list = []
|
234 |
+
for i in range(len(textlist)):
|
235 |
+
text = textlist[i]
|
236 |
+
lang = langlist[i]
|
237 |
+
phones, word2ph, norm_text = clean_text_inf(text, lang)
|
238 |
+
bert = get_bert_inf(phones, word2ph, norm_text, lang)
|
239 |
+
bert_list.append(bert)
|
240 |
+
bert = torch.cat(bert_list, dim=1)
|
241 |
+
|
242 |
+
return bert
|
243 |
+
|
244 |
+
def get_tts_wav(selected_text, prompt_text, prompt_language, text, text_language,how_to_cut=("不切")):
|
245 |
ref_wav_path = text_to_audio_mappings.get(selected_text, "")
|
246 |
if not ref_wav_path:
|
247 |
print("Audio file not found for the selected text.")
|
|
|
274 |
t1 = ttime()
|
275 |
prompt_language = dict_language[prompt_language]
|
276 |
text_language = dict_language[text_language]
|
277 |
+
|
278 |
+
if prompt_language == "en":
|
279 |
+
phones1, word2ph1, norm_text1 = clean_text_inf(prompt_text, prompt_language)
|
280 |
+
else:
|
281 |
+
phones1, word2ph1, norm_text1 = nonen_clean_text_inf(prompt_text, prompt_language)
|
282 |
+
if(how_to_cut==("凑五句一切")):text=cut1(text)
|
283 |
+
elif(how_to_cut==("凑50字一切")):text=cut2(text)
|
284 |
+
elif(how_to_cut==("按中文句号。切")):text=cut3(text)
|
285 |
+
elif(how_to_cut==("按英文句号.切")):text=cut4(text)
|
286 |
+
text = text.replace("\n\n","\n").replace("\n\n","\n").replace("\n\n","\n")
|
287 |
+
if(text[-1]not in splits):text+="。"if text_language!="en"else "."
|
288 |
+
texts=text.split("\n")
|
289 |
audio_opt = []
|
290 |
+
if prompt_language == "en":
|
291 |
+
bert1 = get_bert_inf(phones1, word2ph1, norm_text1, prompt_language)
|
292 |
+
else:
|
293 |
+
bert1 = nonen_get_bert_inf(prompt_text, prompt_language)
|
294 |
|
295 |
for text in texts:
|
296 |
# 解决输入目标文本的空行导致报错的问题
|
297 |
if (len(text.strip()) == 0):
|
298 |
continue
|
299 |
+
if text_language == "en":
|
300 |
+
phones2, word2ph2, norm_text2 = clean_text_inf(text, text_language)
|
|
|
|
|
301 |
else:
|
302 |
+
phones2, word2ph2, norm_text2 = nonen_clean_text_inf(text, text_language)
|
303 |
+
|
304 |
+
if text_language == "en":
|
305 |
+
bert2 = get_bert_inf(phones2, word2ph2, norm_text2, text_language)
|
|
|
|
|
306 |
else:
|
307 |
+
bert2 = nonen_get_bert_inf(text, text_language)
|
308 |
bert = torch.cat([bert1, bert2], 1)
|
309 |
|
310 |
all_phoneme_ids = torch.LongTensor(phones1 + phones2).to(device).unsqueeze(0)
|
|
|
462 |
### <center>⚠️在线端不稳定且生成速度较慢,强烈建议下载模型本地推理!\n
|
463 |
""")
|
464 |
# with gr.Tabs():
|
465 |
+
|
466 |
with gr.Group():
|
467 |
gr.Markdown(value="*参考音频选择(必选)")
|
468 |
with gr.Row():
|