Spaces:
Runtime error
Runtime error
# Ultralytics YOLO π, AGPL-3.0 license | |
from collections import defaultdict | |
import cv2 | |
import numpy as np | |
from ultralytics.utils.checks import check_imshow, check_requirements | |
from ultralytics.utils.plotting import Annotator | |
check_requirements("shapely>=2.0.0") | |
from shapely.geometry import LineString, Point, Polygon | |
class Heatmap: | |
"""A class to draw heatmaps in real-time video stream based on their tracks.""" | |
def __init__( | |
self, | |
classes_names, | |
imw=0, | |
imh=0, | |
colormap=cv2.COLORMAP_JET, | |
heatmap_alpha=0.5, | |
view_img=False, | |
view_in_counts=True, | |
view_out_counts=True, | |
count_reg_pts=None, | |
count_txt_color=(0, 0, 0), | |
count_bg_color=(255, 255, 255), | |
count_reg_color=(255, 0, 255), | |
region_thickness=5, | |
line_dist_thresh=15, | |
line_thickness=2, | |
decay_factor=0.99, | |
shape="circle", | |
): | |
"""Initializes the heatmap class with default values for Visual, Image, track, count and heatmap parameters.""" | |
# Visual information | |
self.annotator = None | |
self.view_img = view_img | |
self.shape = shape | |
self.initialized = False | |
self.names = classes_names # Classes names | |
# Image information | |
self.imw = imw | |
self.imh = imh | |
self.im0 = None | |
self.tf = line_thickness | |
self.view_in_counts = view_in_counts | |
self.view_out_counts = view_out_counts | |
# Heatmap colormap and heatmap np array | |
self.colormap = colormap | |
self.heatmap = None | |
self.heatmap_alpha = heatmap_alpha | |
# Predict/track information | |
self.boxes = None | |
self.track_ids = None | |
self.clss = None | |
self.track_history = defaultdict(list) | |
# Region & Line Information | |
self.counting_region = None | |
self.line_dist_thresh = line_dist_thresh | |
self.region_thickness = region_thickness | |
self.region_color = count_reg_color | |
# Object Counting Information | |
self.in_counts = 0 | |
self.out_counts = 0 | |
self.count_ids = [] | |
self.class_wise_count = {} | |
self.count_txt_color = count_txt_color | |
self.count_bg_color = count_bg_color | |
self.cls_txtdisplay_gap = 50 | |
# Decay factor | |
self.decay_factor = decay_factor | |
# Check if environment supports imshow | |
self.env_check = check_imshow(warn=True) | |
# Region and line selection | |
self.count_reg_pts = count_reg_pts | |
print(self.count_reg_pts) | |
if self.count_reg_pts is not None: | |
if len(self.count_reg_pts) == 2: | |
print("Line Counter Initiated.") | |
self.counting_region = LineString(self.count_reg_pts) | |
elif len(self.count_reg_pts) >= 3: | |
print("Polygon Counter Initiated.") | |
self.counting_region = Polygon(self.count_reg_pts) | |
else: | |
print("Invalid Region points provided, region_points must be 2 for lines or >= 3 for polygons.") | |
print("Using Line Counter Now") | |
self.counting_region = LineString(self.count_reg_pts) | |
# Shape of heatmap, if not selected | |
if self.shape not in {"circle", "rect"}: | |
print("Unknown shape value provided, 'circle' & 'rect' supported") | |
print("Using Circular shape now") | |
self.shape = "circle" | |
def extract_results(self, tracks, _intialized=False): | |
""" | |
Extracts results from the provided data. | |
Args: | |
tracks (list): List of tracks obtained from the object tracking process. | |
""" | |
self.boxes = tracks[0].boxes.xyxy.cpu() | |
self.clss = tracks[0].boxes.cls.cpu().tolist() | |
self.track_ids = tracks[0].boxes.id.int().cpu().tolist() | |
def generate_heatmap(self, im0, tracks): | |
""" | |
Generate heatmap based on tracking data. | |
Args: | |
im0 (nd array): Image | |
tracks (list): List of tracks obtained from the object tracking process. | |
""" | |
self.im0 = im0 | |
# Initialize heatmap only once | |
if not self.initialized: | |
self.heatmap = np.zeros((int(self.im0.shape[0]), int(self.im0.shape[1])), dtype=np.float32) | |
self.initialized = True | |
self.heatmap *= self.decay_factor # decay factor | |
self.extract_results(tracks) | |
self.annotator = Annotator(self.im0, self.tf, None) | |
if self.track_ids is not None: | |
# Draw counting region | |
if self.count_reg_pts is not None: | |
self.annotator.draw_region( | |
reg_pts=self.count_reg_pts, color=self.region_color, thickness=self.region_thickness | |
) | |
for box, cls, track_id in zip(self.boxes, self.clss, self.track_ids): | |
# Store class info | |
if self.names[cls] not in self.class_wise_count: | |
self.class_wise_count[self.names[cls]] = {"IN": 0, "OUT": 0} | |
if self.shape == "circle": | |
center = (int((box[0] + box[2]) // 2), int((box[1] + box[3]) // 2)) | |
radius = min(int(box[2]) - int(box[0]), int(box[3]) - int(box[1])) // 2 | |
y, x = np.ogrid[0 : self.heatmap.shape[0], 0 : self.heatmap.shape[1]] | |
mask = (x - center[0]) ** 2 + (y - center[1]) ** 2 <= radius**2 | |
self.heatmap[int(box[1]) : int(box[3]), int(box[0]) : int(box[2])] += ( | |
2 * mask[int(box[1]) : int(box[3]), int(box[0]) : int(box[2])] | |
) | |
else: | |
self.heatmap[int(box[1]) : int(box[3]), int(box[0]) : int(box[2])] += 2 | |
# Store tracking hist | |
track_line = self.track_history[track_id] | |
track_line.append((float((box[0] + box[2]) / 2), float((box[1] + box[3]) / 2))) | |
if len(track_line) > 30: | |
track_line.pop(0) | |
prev_position = self.track_history[track_id][-2] if len(self.track_history[track_id]) > 1 else None | |
if self.count_reg_pts is not None: | |
# Count objects in any polygon | |
if len(self.count_reg_pts) >= 3: | |
is_inside = self.counting_region.contains(Point(track_line[-1])) | |
if prev_position is not None and is_inside and track_id not in self.count_ids: | |
self.count_ids.append(track_id) | |
if (box[0] - prev_position[0]) * (self.counting_region.centroid.x - prev_position[0]) > 0: | |
self.in_counts += 1 | |
self.class_wise_count[self.names[cls]]["IN"] += 1 | |
else: | |
self.out_counts += 1 | |
self.class_wise_count[self.names[cls]]["OUT"] += 1 | |
# Count objects using line | |
elif len(self.count_reg_pts) == 2: | |
if prev_position is not None and track_id not in self.count_ids: | |
distance = Point(track_line[-1]).distance(self.counting_region) | |
if distance < self.line_dist_thresh and track_id not in self.count_ids: | |
self.count_ids.append(track_id) | |
if (box[0] - prev_position[0]) * ( | |
self.counting_region.centroid.x - prev_position[0] | |
) > 0: | |
self.in_counts += 1 | |
self.class_wise_count[self.names[cls]]["IN"] += 1 | |
else: | |
self.out_counts += 1 | |
self.class_wise_count[self.names[cls]]["OUT"] += 1 | |
else: | |
for box, cls in zip(self.boxes, self.clss): | |
if self.shape == "circle": | |
center = (int((box[0] + box[2]) // 2), int((box[1] + box[3]) // 2)) | |
radius = min(int(box[2]) - int(box[0]), int(box[3]) - int(box[1])) // 2 | |
y, x = np.ogrid[0 : self.heatmap.shape[0], 0 : self.heatmap.shape[1]] | |
mask = (x - center[0]) ** 2 + (y - center[1]) ** 2 <= radius**2 | |
self.heatmap[int(box[1]) : int(box[3]), int(box[0]) : int(box[2])] += ( | |
2 * mask[int(box[1]) : int(box[3]), int(box[0]) : int(box[2])] | |
) | |
else: | |
self.heatmap[int(box[1]) : int(box[3]), int(box[0]) : int(box[2])] += 2 | |
if self.count_reg_pts is not None: | |
labels_dict = {} | |
for key, value in self.class_wise_count.items(): | |
if value["IN"] != 0 or value["OUT"] != 0: | |
if not self.view_in_counts and not self.view_out_counts: | |
continue | |
elif not self.view_in_counts: | |
labels_dict[str.capitalize(key)] = f"OUT {value['OUT']}" | |
elif not self.view_out_counts: | |
labels_dict[str.capitalize(key)] = f"IN {value['IN']}" | |
else: | |
labels_dict[str.capitalize(key)] = f"IN {value['IN']} OUT {value['OUT']}" | |
if labels_dict is not None: | |
self.annotator.display_analytics(self.im0, labels_dict, self.count_txt_color, self.count_bg_color, 10) | |
# Normalize, apply colormap to heatmap and combine with original image | |
heatmap_normalized = cv2.normalize(self.heatmap, None, 0, 255, cv2.NORM_MINMAX) | |
heatmap_colored = cv2.applyColorMap(heatmap_normalized.astype(np.uint8), self.colormap) | |
self.im0 = cv2.addWeighted(self.im0, 1 - self.heatmap_alpha, heatmap_colored, self.heatmap_alpha, 0) | |
if self.env_check and self.view_img: | |
self.display_frames() | |
return self.im0 | |
def display_frames(self): | |
"""Display frame.""" | |
cv2.imshow("Ultralytics Heatmap", self.im0) | |
if cv2.waitKey(1) & 0xFF == ord("q"): | |
return | |
if __name__ == "__main__": | |
classes_names = {0: "person", 1: "car"} # example class names | |
heatmap = Heatmap(classes_names) | |