Spaces:
Runtime error
Runtime error
# Ultralytics YOLO π, AGPL-3.0 license | |
import warnings | |
from itertools import cycle | |
import cv2 | |
import matplotlib.pyplot as plt | |
import numpy as np | |
from matplotlib.backends.backend_agg import FigureCanvasAgg as FigureCanvas | |
from matplotlib.figure import Figure | |
class Analytics: | |
"""A class to create and update various types of charts (line, bar, pie, area) for visual analytics.""" | |
def __init__( | |
self, | |
type, | |
writer, | |
im0_shape, | |
title="ultralytics", | |
x_label="x", | |
y_label="y", | |
bg_color="white", | |
fg_color="black", | |
line_color="yellow", | |
line_width=2, | |
points_width=10, | |
fontsize=13, | |
view_img=False, | |
save_img=True, | |
max_points=50, | |
): | |
""" | |
Initialize the Analytics class with various chart types. | |
Args: | |
type (str): Type of chart to initialize ('line', 'bar', 'pie', or 'area'). | |
writer (object): Video writer object to save the frames. | |
im0_shape (tuple): Shape of the input image (width, height). | |
title (str): Title of the chart. | |
x_label (str): Label for the x-axis. | |
y_label (str): Label for the y-axis. | |
bg_color (str): Background color of the chart. | |
fg_color (str): Foreground (text) color of the chart. | |
line_color (str): Line color for line charts. | |
line_width (int): Width of the lines in line charts. | |
points_width (int): Width of line points highlighter | |
fontsize (int): Font size for chart text. | |
view_img (bool): Whether to display the image. | |
save_img (bool): Whether to save the image. | |
max_points (int): Specifies when to remove the oldest points in a graph for multiple lines. | |
""" | |
self.bg_color = bg_color | |
self.fg_color = fg_color | |
self.view_img = view_img | |
self.save_img = save_img | |
self.title = title | |
self.writer = writer | |
self.max_points = max_points | |
self.line_color = line_color | |
self.x_label = x_label | |
self.y_label = y_label | |
self.points_width = points_width | |
self.line_width = line_width | |
self.fontsize = fontsize | |
# Set figure size based on image shape | |
figsize = (im0_shape[0] / 100, im0_shape[1] / 100) | |
if type in {"line", "area"}: | |
# Initialize line or area plot | |
self.lines = {} | |
self.fig = Figure(facecolor=self.bg_color, figsize=figsize) | |
self.canvas = FigureCanvas(self.fig) | |
self.ax = self.fig.add_subplot(111, facecolor=self.bg_color) | |
if type == "line": | |
(self.line,) = self.ax.plot([], [], color=self.line_color, linewidth=self.line_width) | |
elif type in {"bar", "pie"}: | |
# Initialize bar or pie plot | |
self.fig, self.ax = plt.subplots(figsize=figsize, facecolor=self.bg_color) | |
self.ax.set_facecolor(self.bg_color) | |
color_palette = [ | |
(31, 119, 180), | |
(255, 127, 14), | |
(44, 160, 44), | |
(214, 39, 40), | |
(148, 103, 189), | |
(140, 86, 75), | |
(227, 119, 194), | |
(127, 127, 127), | |
(188, 189, 34), | |
(23, 190, 207), | |
] | |
self.color_palette = [(r / 255, g / 255, b / 255, 1) for r, g, b in color_palette] | |
self.color_cycle = cycle(self.color_palette) | |
self.color_mapping = {} | |
# Ensure pie chart is circular | |
self.ax.axis("equal") if type == "pie" else None | |
# Set common axis properties | |
self.ax.set_title(self.title, color=self.fg_color, fontsize=self.fontsize) | |
self.ax.set_xlabel(x_label, color=self.fg_color, fontsize=self.fontsize - 3) | |
self.ax.set_ylabel(y_label, color=self.fg_color, fontsize=self.fontsize - 3) | |
self.ax.tick_params(axis="both", colors=self.fg_color) | |
def update_area(self, frame_number, counts_dict): | |
""" | |
Update the area graph with new data for multiple classes. | |
Args: | |
frame_number (int): The current frame number. | |
counts_dict (dict): Dictionary with class names as keys and counts as values. | |
""" | |
x_data = np.array([]) | |
y_data_dict = {key: np.array([]) for key in counts_dict.keys()} | |
if self.ax.lines: | |
x_data = self.ax.lines[0].get_xdata() | |
for line, key in zip(self.ax.lines, counts_dict.keys()): | |
y_data_dict[key] = line.get_ydata() | |
x_data = np.append(x_data, float(frame_number)) | |
max_length = len(x_data) | |
for key in counts_dict.keys(): | |
y_data_dict[key] = np.append(y_data_dict[key], float(counts_dict[key])) | |
if len(y_data_dict[key]) < max_length: | |
y_data_dict[key] = np.pad(y_data_dict[key], (0, max_length - len(y_data_dict[key])), "constant") | |
# Remove the oldest points if the number of points exceeds max_points | |
if len(x_data) > self.max_points: | |
x_data = x_data[1:] | |
for key in counts_dict.keys(): | |
y_data_dict[key] = y_data_dict[key][1:] | |
self.ax.clear() | |
colors = ["#E1FF25", "#0BDBEB", "#FF64DA", "#111F68", "#042AFF"] | |
color_cycle = cycle(colors) | |
for key, y_data in y_data_dict.items(): | |
color = next(color_cycle) | |
self.ax.fill_between(x_data, y_data, color=color, alpha=0.6) | |
self.ax.plot( | |
x_data, | |
y_data, | |
color=color, | |
linewidth=self.line_width, | |
marker="o", | |
markersize=self.points_width, | |
label=f"{key} Data Points", | |
) | |
self.ax.set_title(self.title, color=self.fg_color, fontsize=self.fontsize) | |
self.ax.set_xlabel(self.x_label, color=self.fg_color, fontsize=self.fontsize - 3) | |
self.ax.set_ylabel(self.y_label, color=self.fg_color, fontsize=self.fontsize - 3) | |
legend = self.ax.legend(loc="upper left", fontsize=13, facecolor=self.bg_color, edgecolor=self.fg_color) | |
# Set legend text color | |
for text in legend.get_texts(): | |
text.set_color(self.fg_color) | |
self.canvas.draw() | |
im0 = np.array(self.canvas.renderer.buffer_rgba()) | |
self.write_and_display(im0) | |
def update_line(self, frame_number, total_counts): | |
""" | |
Update the line graph with new data. | |
Args: | |
frame_number (int): The current frame number. | |
total_counts (int): The total counts to plot. | |
""" | |
# Update line graph data | |
x_data = self.line.get_xdata() | |
y_data = self.line.get_ydata() | |
x_data = np.append(x_data, float(frame_number)) | |
y_data = np.append(y_data, float(total_counts)) | |
self.line.set_data(x_data, y_data) | |
self.ax.relim() | |
self.ax.autoscale_view() | |
self.canvas.draw() | |
im0 = np.array(self.canvas.renderer.buffer_rgba()) | |
self.write_and_display(im0) | |
def update_multiple_lines(self, counts_dict, labels_list, frame_number): | |
""" | |
Update the line graph with multiple classes. | |
Args: | |
counts_dict (int): Dictionary include each class counts. | |
labels_list (int): list include each classes names. | |
frame_number (int): The current frame number. | |
""" | |
warnings.warn("Display is not supported for multiple lines, output will be stored normally!") | |
for obj in labels_list: | |
if obj not in self.lines: | |
(line,) = self.ax.plot([], [], label=obj, marker="o", markersize=self.points_width) | |
self.lines[obj] = line | |
x_data = self.lines[obj].get_xdata() | |
y_data = self.lines[obj].get_ydata() | |
# Remove the initial point if the number of points exceeds max_points | |
if len(x_data) >= self.max_points: | |
x_data = np.delete(x_data, 0) | |
y_data = np.delete(y_data, 0) | |
x_data = np.append(x_data, float(frame_number)) # Ensure frame_number is converted to float | |
y_data = np.append(y_data, float(counts_dict.get(obj, 0))) # Ensure total_count is converted to float | |
self.lines[obj].set_data(x_data, y_data) | |
self.ax.relim() | |
self.ax.autoscale_view() | |
self.ax.legend() | |
self.canvas.draw() | |
im0 = np.array(self.canvas.renderer.buffer_rgba()) | |
self.view_img = False # for multiple line view_img not supported yet, coming soon! | |
self.write_and_display(im0) | |
def write_and_display(self, im0): | |
""" | |
Write and display the line graph | |
Args: | |
im0 (ndarray): Image for processing | |
""" | |
im0 = cv2.cvtColor(im0[:, :, :3], cv2.COLOR_RGBA2BGR) | |
cv2.imshow(self.title, im0) if self.view_img else None | |
self.writer.write(im0) if self.save_img else None | |
def update_bar(self, count_dict): | |
""" | |
Update the bar graph with new data. | |
Args: | |
count_dict (dict): Dictionary containing the count data to plot. | |
""" | |
# Update bar graph data | |
self.ax.clear() | |
self.ax.set_facecolor(self.bg_color) | |
labels = list(count_dict.keys()) | |
counts = list(count_dict.values()) | |
# Map labels to colors | |
for label in labels: | |
if label not in self.color_mapping: | |
self.color_mapping[label] = next(self.color_cycle) | |
colors = [self.color_mapping[label] for label in labels] | |
bars = self.ax.bar(labels, counts, color=colors) | |
for bar, count in zip(bars, counts): | |
self.ax.text( | |
bar.get_x() + bar.get_width() / 2, | |
bar.get_height(), | |
str(count), | |
ha="center", | |
va="bottom", | |
color=self.fg_color, | |
) | |
# Display and save the updated graph | |
canvas = FigureCanvas(self.fig) | |
canvas.draw() | |
buf = canvas.buffer_rgba() | |
im0 = np.asarray(buf) | |
self.write_and_display(im0) | |
def update_pie(self, classes_dict): | |
""" | |
Update the pie chart with new data. | |
Args: | |
classes_dict (dict): Dictionary containing the class data to plot. | |
""" | |
# Update pie chart data | |
labels = list(classes_dict.keys()) | |
sizes = list(classes_dict.values()) | |
total = sum(sizes) | |
percentages = [size / total * 100 for size in sizes] | |
start_angle = 90 | |
self.ax.clear() | |
# Create pie chart without labels inside the slices | |
wedges, autotexts = self.ax.pie(sizes, autopct=None, startangle=start_angle, textprops={"color": self.fg_color}) | |
# Construct legend labels with percentages | |
legend_labels = [f"{label} ({percentage:.1f}%)" for label, percentage in zip(labels, percentages)] | |
self.ax.legend(wedges, legend_labels, title="Classes", loc="center left", bbox_to_anchor=(1, 0, 0.5, 1)) | |
# Adjust layout to fit the legend | |
self.fig.tight_layout() | |
self.fig.subplots_adjust(left=0.1, right=0.75) | |
# Display and save the updated chart | |
im0 = self.fig.canvas.draw() | |
im0 = np.array(self.fig.canvas.renderer.buffer_rgba()) | |
self.write_and_display(im0) | |
if __name__ == "__main__": | |
Analytics("line", writer=None, im0_shape=None) | |