|
from dataclasses import dataclass |
|
from typing import List, Optional, Tuple, Union |
|
|
|
import torch |
|
import numpy as np |
|
import torch.nn.functional as F |
|
from torch import nn |
|
import torchvision |
|
import diffusers |
|
from packaging import version |
|
|
|
from diffusers.configuration_utils import ConfigMixin, register_to_config |
|
from diffusers import ModelMixin |
|
from diffusers.utils import BaseOutput |
|
from diffusers.utils.import_utils import is_xformers_available |
|
from diffusers.models.attention import Attention, FeedForward |
|
|
|
from einops import rearrange, repeat |
|
import math |
|
|
|
|
|
def zero_module(module): |
|
|
|
for p in module.parameters(): |
|
p.detach().zero_() |
|
return module |
|
|
|
|
|
@dataclass |
|
class TemporalTransformer3DModelOutput(BaseOutput): |
|
sample: torch.FloatTensor |
|
|
|
|
|
if is_xformers_available(): |
|
import xformers |
|
import xformers.ops |
|
else: |
|
xformers = None |
|
|
|
|
|
def get_motion_module( |
|
in_channels, |
|
motion_module_type: str, |
|
motion_module_kwargs: dict |
|
): |
|
if motion_module_type == "Vanilla": |
|
return VanillaTemporalModule(in_channels=in_channels, **motion_module_kwargs,) |
|
else: |
|
raise ValueError |
|
|
|
|
|
class VanillaTemporalModule(nn.Module): |
|
def __init__( |
|
self, |
|
in_channels, |
|
num_attention_heads = 8, |
|
num_transformer_block = 2, |
|
attention_block_types =( "Temporal_Self", "Temporal_Self" ), |
|
cross_frame_attention_mode = None, |
|
temporal_position_encoding = False, |
|
temporal_position_encoding_max_len = 24, |
|
temporal_attention_dim_div = 1, |
|
zero_initialize = True, |
|
): |
|
super().__init__() |
|
|
|
self.temporal_transformer = TemporalTransformer3DModel( |
|
in_channels=in_channels, |
|
num_attention_heads=num_attention_heads, |
|
attention_head_dim=in_channels // num_attention_heads // temporal_attention_dim_div, |
|
num_layers=num_transformer_block, |
|
attention_block_types=attention_block_types, |
|
cross_frame_attention_mode=cross_frame_attention_mode, |
|
temporal_position_encoding=temporal_position_encoding, |
|
temporal_position_encoding_max_len=temporal_position_encoding_max_len, |
|
) |
|
|
|
if zero_initialize: |
|
self.temporal_transformer.proj_out = zero_module(self.temporal_transformer.proj_out) |
|
|
|
def forward(self, input_tensor, temb, encoder_hidden_states, attention_mask=None, anchor_frame_idx=None): |
|
video_length = input_tensor.shape[2] |
|
|
|
if video_length > 1: |
|
hidden_states = input_tensor |
|
hidden_states = self.temporal_transformer(hidden_states, encoder_hidden_states, attention_mask) |
|
output = hidden_states |
|
else: |
|
output = input_tensor |
|
|
|
return output |
|
|
|
|
|
class TemporalTransformer3DModel(nn.Module): |
|
def __init__( |
|
self, |
|
in_channels, |
|
num_attention_heads, |
|
attention_head_dim, |
|
|
|
num_layers, |
|
attention_block_types = ( "Temporal_Self", "Temporal_Self", ), |
|
dropout = 0.0, |
|
norm_num_groups = 32, |
|
cross_attention_dim = 768, |
|
activation_fn = "geglu", |
|
attention_bias = False, |
|
upcast_attention = False, |
|
|
|
cross_frame_attention_mode = None, |
|
temporal_position_encoding = False, |
|
temporal_position_encoding_max_len = 24, |
|
): |
|
super().__init__() |
|
|
|
inner_dim = num_attention_heads * attention_head_dim |
|
|
|
self.norm = torch.nn.GroupNorm(num_groups=norm_num_groups, num_channels=in_channels, eps=1e-6, affine=True) |
|
self.proj_in = nn.Linear(in_channels, inner_dim) |
|
|
|
self.transformer_blocks = nn.ModuleList( |
|
[ |
|
TemporalTransformerBlock( |
|
dim=inner_dim, |
|
num_attention_heads=num_attention_heads, |
|
attention_head_dim=attention_head_dim, |
|
attention_block_types=attention_block_types, |
|
dropout=dropout, |
|
norm_num_groups=norm_num_groups, |
|
cross_attention_dim=cross_attention_dim, |
|
activation_fn=activation_fn, |
|
attention_bias=attention_bias, |
|
upcast_attention=upcast_attention, |
|
cross_frame_attention_mode=cross_frame_attention_mode, |
|
temporal_position_encoding=temporal_position_encoding, |
|
temporal_position_encoding_max_len=temporal_position_encoding_max_len, |
|
) |
|
for d in range(num_layers) |
|
] |
|
) |
|
self.proj_out = nn.Linear(inner_dim, in_channels) |
|
|
|
def forward(self, hidden_states, encoder_hidden_states=None, attention_mask=None): |
|
assert hidden_states.dim() == 5, f"Expected hidden_states to have ndim=5, but got ndim={hidden_states.dim()}." |
|
video_length = hidden_states.shape[2] |
|
hidden_states = rearrange(hidden_states, "b c f h w -> (b f) c h w") |
|
|
|
batch, channel, height, weight = hidden_states.shape |
|
residual = hidden_states |
|
|
|
hidden_states = self.norm(hidden_states) |
|
inner_dim = hidden_states.shape[1] |
|
hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(batch, height * weight, inner_dim) |
|
hidden_states = self.proj_in(hidden_states) |
|
|
|
|
|
for block in self.transformer_blocks: |
|
hidden_states = block(hidden_states, encoder_hidden_states=encoder_hidden_states, video_length=video_length) |
|
|
|
|
|
hidden_states = self.proj_out(hidden_states) |
|
hidden_states = hidden_states.reshape(batch, height, weight, inner_dim).permute(0, 3, 1, 2).contiguous() |
|
|
|
output = hidden_states + residual |
|
output = rearrange(output, "(b f) c h w -> b c f h w", f=video_length) |
|
|
|
return output |
|
|
|
|
|
class TemporalTransformerBlock(nn.Module): |
|
def __init__( |
|
self, |
|
dim, |
|
num_attention_heads, |
|
attention_head_dim, |
|
attention_block_types = ( "Temporal_Self", "Temporal_Self", ), |
|
dropout = 0.0, |
|
norm_num_groups = 32, |
|
cross_attention_dim = 768, |
|
activation_fn = "geglu", |
|
attention_bias = False, |
|
upcast_attention = False, |
|
cross_frame_attention_mode = None, |
|
temporal_position_encoding = False, |
|
temporal_position_encoding_max_len = 24, |
|
): |
|
super().__init__() |
|
|
|
attention_blocks = [] |
|
norms = [] |
|
|
|
for block_name in attention_block_types: |
|
attention_blocks.append( |
|
VersatileAttention( |
|
attention_mode=block_name.split("_")[0], |
|
cross_attention_dim=cross_attention_dim if block_name.endswith("_Cross") else None, |
|
|
|
query_dim=dim, |
|
heads=num_attention_heads, |
|
dim_head=attention_head_dim, |
|
dropout=dropout, |
|
bias=attention_bias, |
|
upcast_attention=upcast_attention, |
|
|
|
cross_frame_attention_mode=cross_frame_attention_mode, |
|
temporal_position_encoding=temporal_position_encoding, |
|
temporal_position_encoding_max_len=temporal_position_encoding_max_len, |
|
) |
|
) |
|
norms.append(nn.LayerNorm(dim)) |
|
|
|
self.attention_blocks = nn.ModuleList(attention_blocks) |
|
self.norms = nn.ModuleList(norms) |
|
|
|
self.ff = FeedForward(dim, dropout=dropout, activation_fn=activation_fn) |
|
self.ff_norm = nn.LayerNorm(dim) |
|
|
|
|
|
def forward(self, hidden_states, encoder_hidden_states=None, attention_mask=None, video_length=None): |
|
for attention_block, norm in zip(self.attention_blocks, self.norms): |
|
norm_hidden_states = norm(hidden_states) |
|
hidden_states = attention_block( |
|
norm_hidden_states, |
|
encoder_hidden_states=encoder_hidden_states if attention_block.is_cross_attention else None, |
|
video_length=video_length, |
|
) + hidden_states |
|
|
|
hidden_states = self.ff(self.ff_norm(hidden_states)) + hidden_states |
|
|
|
output = hidden_states |
|
return output |
|
|
|
|
|
class PositionalEncoding(nn.Module): |
|
def __init__( |
|
self, |
|
d_model, |
|
dropout = 0., |
|
max_len = 24 |
|
): |
|
super().__init__() |
|
self.dropout = nn.Dropout(p=dropout) |
|
position = torch.arange(max_len).unsqueeze(1) |
|
div_term = torch.exp(torch.arange(0, d_model, 2) * (-math.log(10000.0) / d_model)) |
|
pe = torch.zeros(1, max_len, d_model) |
|
pe[0, :, 0::2] = torch.sin(position * div_term) |
|
pe[0, :, 1::2] = torch.cos(position * div_term) |
|
self.register_buffer('pe', pe) |
|
|
|
def forward(self, x): |
|
x = x + self.pe[:, :x.size(1)] |
|
return self.dropout(x) |
|
|
|
|
|
class VersatileAttention(Attention): |
|
def __init__( |
|
self, |
|
attention_mode = None, |
|
cross_frame_attention_mode = None, |
|
temporal_position_encoding = False, |
|
temporal_position_encoding_max_len = 24, |
|
*args, **kwargs |
|
): |
|
super().__init__(*args, **kwargs) |
|
assert attention_mode == "Temporal" |
|
|
|
self.attention_mode = attention_mode |
|
self.is_cross_attention = kwargs["cross_attention_dim"] is not None |
|
|
|
self.pos_encoder = PositionalEncoding( |
|
kwargs["query_dim"], |
|
dropout=0., |
|
max_len=temporal_position_encoding_max_len |
|
) if (temporal_position_encoding and attention_mode == "Temporal") else None |
|
|
|
def extra_repr(self): |
|
return f"(Module Info) Attention_Mode: {self.attention_mode}, Is_Cross_Attention: {self.is_cross_attention}" |
|
|
|
def forward(self, hidden_states, encoder_hidden_states=None, attention_mask=None, video_length=None): |
|
batch_size, sequence_length, _ = hidden_states.shape |
|
|
|
if self.attention_mode == "Temporal": |
|
d = hidden_states.shape[1] |
|
hidden_states = rearrange(hidden_states, "(b f) d c -> (b d) f c", f=video_length) |
|
|
|
if self.pos_encoder is not None: |
|
hidden_states = self.pos_encoder(hidden_states) |
|
|
|
encoder_hidden_states = repeat(encoder_hidden_states, "b n c -> (b d) n c", d=d) if encoder_hidden_states is not None else encoder_hidden_states |
|
else: |
|
raise NotImplementedError |
|
|
|
encoder_hidden_states = encoder_hidden_states |
|
|
|
if version.parse(diffusers.__version__) > version.parse("0.11.1"): |
|
hidden_states = self.processor(self, hidden_states, encoder_hidden_states) |
|
else: |
|
if self.group_norm is not None: |
|
hidden_states = self.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2) |
|
|
|
query = self.to_q(hidden_states) |
|
dim = query.shape[-1] |
|
query = self.head_to_batch_dim(query) |
|
|
|
if self.added_kv_proj_dim is not None: |
|
raise NotImplementedError |
|
|
|
encoder_hidden_states = encoder_hidden_states if encoder_hidden_states is not None else hidden_states |
|
key = self.to_k(encoder_hidden_states) |
|
value = self.to_v(encoder_hidden_states) |
|
|
|
key = self.head_to_batch_dim(key) |
|
value = self.head_to_batch_dim(value) |
|
|
|
if attention_mask is not None: |
|
if attention_mask.shape[-1] != query.shape[1]: |
|
target_length = query.shape[1] |
|
attention_mask = F.pad(attention_mask, (0, target_length), value=0.0) |
|
attention_mask = attention_mask.repeat_interleave(self.heads, dim=0) |
|
|
|
|
|
|
|
if self._use_memory_efficient_attention_xformers: |
|
hidden_states = self._memory_efficient_attention_xformers(query, key, value, attention_mask) |
|
|
|
hidden_states = hidden_states.to(query.dtype) |
|
else: |
|
if self._slice_size is None or query.shape[0] // self._slice_size == 1: |
|
hidden_states = self._attention(query, key, value, attention_mask) |
|
else: |
|
hidden_states = self._sliced_attention(query, key, value, sequence_length, dim, attention_mask) |
|
else: |
|
|
|
|
|
|
|
|
|
|
|
hidden_states = F.scaled_dot_product_attention( |
|
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False |
|
) |
|
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) |
|
hidden_states = hidden_states.to(query.dtype) |
|
|
|
|
|
hidden_states = self.to_out[0](hidden_states) |
|
|
|
|
|
hidden_states = self.to_out[1](hidden_states) |
|
|
|
if self.attention_mode == "Temporal": |
|
hidden_states = rearrange(hidden_states, "(b d) f c -> (b f) d c", d=d) |
|
|
|
return hidden_states |