Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,86 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#https://huggingface.co/spaces/Xuratron/abstract-speech-summarizer
|
2 |
+
|
3 |
+
# Here are the imports
|
4 |
+
import PyPDF2
|
5 |
+
import re
|
6 |
+
import torch
|
7 |
+
from transformers import pipeline
|
8 |
+
import soundfile as sf
|
9 |
+
from fairseq.checkpoint_utils import load_model_ensemble_and_task_from_hf_hub
|
10 |
+
from fairseq.models.text_to_speech.hub_interface import TTSHubInterface
|
11 |
+
import gradio as gr
|
12 |
+
|
13 |
+
|
14 |
+
# Here is the code
|
15 |
+
|
16 |
+
def extract_and_clean_abstract(uploaded_file):
|
17 |
+
"""
|
18 |
+
Extracts and cleans the abstract from the uploaded PDF file.
|
19 |
+
"""
|
20 |
+
reader = PyPDF2.PdfReader(uploaded_file.file)
|
21 |
+
text = ""
|
22 |
+
for page in reader.pages:
|
23 |
+
text += page.extract_text() or ""
|
24 |
+
|
25 |
+
# Regular expression pattern to find the abstract
|
26 |
+
pattern = r"(Abstract|ABSTRACT|abstract)(.*?)(Introduction|INTRODUCTION|introduction|1|Keywords|KEYWORDS|keywords)"
|
27 |
+
match = re.search(pattern, text, re.DOTALL)
|
28 |
+
|
29 |
+
if match:
|
30 |
+
abstract = match.group(2).strip()
|
31 |
+
else:
|
32 |
+
abstract = "Abstract not found."
|
33 |
+
|
34 |
+
# Clean the abstract text
|
35 |
+
cleaned_abstract = abstract.replace('\n', ' ').replace('- ', '')
|
36 |
+
|
37 |
+
return cleaned_abstract
|
38 |
+
|
39 |
+
def summarize_text(hf_model_name, text):
|
40 |
+
"""
|
41 |
+
Summarizes the given text using a Hugging Face model.
|
42 |
+
"""
|
43 |
+
summarizer = pipeline("summarization", model=hf_model_name)
|
44 |
+
summary = summarizer(text, max_length=130, min_length=30, do_sample=False)[0]['summary_text']
|
45 |
+
return summary
|
46 |
+
|
47 |
+
def text_to_speech(text):
|
48 |
+
"""
|
49 |
+
Converts text to speech using a Hugging Face model.
|
50 |
+
"""
|
51 |
+
models, cfg, task = load_model_ensemble_and_task_from_hf_hub(
|
52 |
+
"facebook/fastspeech2-en-ljspeech",
|
53 |
+
arg_overrides={"vocoder": "hifigan", "fp16": False}
|
54 |
+
)
|
55 |
+
model = models[0]
|
56 |
+
TTSHubInterface.update_cfg_with_data_cfg(cfg, task.data_cfg)
|
57 |
+
generator = task.build_generator([model], cfg)
|
58 |
+
sample = TTSHubInterface.get_model_input(task, text)
|
59 |
+
wav, rate = TTSHubInterface.get_prediction(task, model, generator, sample)
|
60 |
+
|
61 |
+
return wav, rate
|
62 |
+
|
63 |
+
def process_pdf(uploaded_file, hf_model_name):
|
64 |
+
"""
|
65 |
+
Processes the uploaded PDF file to extract, summarize the abstract, and convert it to speech.
|
66 |
+
"""
|
67 |
+
abstract = extract_and_clean_abstract(uploaded_file)
|
68 |
+
summary = summarize_text(hf_model_name, abstract)
|
69 |
+
wav, rate = text_to_speech(summary)
|
70 |
+
sf.write('/tmp/speech_output.wav', wav, rate)
|
71 |
+
return '/tmp/speech_output.wav'
|
72 |
+
|
73 |
+
iface = gr.Interface(
|
74 |
+
fn=process_pdf,
|
75 |
+
inputs=[
|
76 |
+
gr.inputs.File(label="Upload PDF", type="pdf"),
|
77 |
+
gr.inputs.Textbox(label="Hugging Face Model Name for Summarization")
|
78 |
+
],
|
79 |
+
outputs=gr.outputs.Audio(label="Audio Summary"),
|
80 |
+
title="PDF Abstract to Speech",
|
81 |
+
description="Extracts and summarizes the abstract from a PDF file and converts it to speech."
|
82 |
+
)
|
83 |
+
|
84 |
+
if __name__ == "__main__":
|
85 |
+
iface.launch()
|
86 |
+
|