Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,86 +1,124 @@
|
|
1 |
-
#https://huggingface.co/spaces/Xuratron/abstract-speech-summarizer
|
2 |
-
|
3 |
# Here are the imports
|
4 |
import PyPDF2
|
5 |
import re
|
6 |
import torch
|
7 |
from transformers import pipeline
|
8 |
-
import soundfile as sf
|
9 |
from fairseq.checkpoint_utils import load_model_ensemble_and_task_from_hf_hub
|
10 |
from fairseq.models.text_to_speech.hub_interface import TTSHubInterface
|
11 |
import gradio as gr
|
12 |
-
|
|
|
|
|
|
|
13 |
|
14 |
# Here is the code
|
15 |
|
|
|
16 |
def extract_and_clean_abstract(uploaded_file):
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
|
|
|
|
24 |
|
25 |
-
#
|
26 |
pattern = r"(Abstract|ABSTRACT|abstract)(.*?)(Introduction|INTRODUCTION|introduction|1|Keywords|KEYWORDS|keywords)"
|
27 |
-
match = re.search(pattern,
|
28 |
|
29 |
if match:
|
30 |
abstract = match.group(2).strip()
|
31 |
else:
|
32 |
-
|
33 |
|
34 |
-
# Clean the abstract
|
35 |
cleaned_abstract = abstract.replace('\n', ' ').replace('- ', '')
|
36 |
|
37 |
return cleaned_abstract
|
38 |
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
|
|
46 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
47 |
def text_to_speech(text):
|
48 |
-
|
49 |
-
|
50 |
-
|
|
|
51 |
models, cfg, task = load_model_ensemble_and_task_from_hf_hub(
|
52 |
-
"facebook/fastspeech2-en-ljspeech",
|
53 |
arg_overrides={"vocoder": "hifigan", "fp16": False}
|
54 |
)
|
55 |
-
|
|
|
|
|
|
|
|
|
56 |
TTSHubInterface.update_cfg_with_data_cfg(cfg, task.data_cfg)
|
|
|
|
|
57 |
generator = task.build_generator([model], cfg)
|
|
|
|
|
58 |
sample = TTSHubInterface.get_model_input(task, text)
|
|
|
|
|
|
|
|
|
59 |
wav, rate = TTSHubInterface.get_prediction(task, model, generator, sample)
|
60 |
-
|
61 |
-
return wav, rate
|
62 |
-
|
63 |
-
def process_pdf(uploaded_file, hf_model_name):
|
64 |
-
if uploaded_file.name.lower().endswith('.pdf'):
|
65 |
-
abstract = extract_and_clean_abstract(uploaded_file)
|
66 |
-
summary = summarize_text(hf_model_name, abstract)
|
67 |
-
wav, rate = text_to_speech(summary)
|
68 |
-
sf.write('/tmp/speech_output.wav', wav, rate)
|
69 |
-
return '/tmp/speech_output.wav'
|
70 |
-
else:
|
71 |
-
return "Error: Please upload a PDF file."
|
72 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
73 |
iface = gr.Interface(
|
74 |
fn=process_pdf,
|
75 |
-
inputs=
|
76 |
-
gr.File(label="Upload PDF"),
|
77 |
-
gr.Textbox(label="Hugging Face Model Name for Summarization")
|
78 |
-
],
|
79 |
outputs=gr.Audio(label="Audio Summary"),
|
80 |
title="PDF Abstract to Speech",
|
81 |
-
description="
|
82 |
)
|
83 |
|
84 |
-
|
85 |
-
|
86 |
-
|
|
|
|
|
|
|
1 |
# Here are the imports
|
2 |
import PyPDF2
|
3 |
import re
|
4 |
import torch
|
5 |
from transformers import pipeline
|
|
|
6 |
from fairseq.checkpoint_utils import load_model_ensemble_and_task_from_hf_hub
|
7 |
from fairseq.models.text_to_speech.hub_interface import TTSHubInterface
|
8 |
import gradio as gr
|
9 |
+
import io
|
10 |
+
import numpy as np
|
11 |
+
import soundfile as sf
|
12 |
+
import tempfile
|
13 |
|
14 |
# Here is the code
|
15 |
|
16 |
+
# Function to extract and clean abstract from PDF
|
17 |
def extract_and_clean_abstract(uploaded_file):
|
18 |
+
if uploaded_file is None:
|
19 |
+
return "No file uploaded."
|
20 |
+
|
21 |
+
# Read the file using its temporary file path
|
22 |
+
with open(uploaded_file.name, 'rb') as file:
|
23 |
+
reader = PyPDF2.PdfReader(file)
|
24 |
+
full_text = ""
|
25 |
+
for page in reader.pages:
|
26 |
+
full_text += page.extract_text()
|
27 |
|
28 |
+
# Find the abstract
|
29 |
pattern = r"(Abstract|ABSTRACT|abstract)(.*?)(Introduction|INTRODUCTION|introduction|1|Keywords|KEYWORDS|keywords)"
|
30 |
+
match = re.search(pattern, full_text, re.DOTALL)
|
31 |
|
32 |
if match:
|
33 |
abstract = match.group(2).strip()
|
34 |
else:
|
35 |
+
return "Abstract not found."
|
36 |
|
37 |
+
# Clean the abstract
|
38 |
cleaned_abstract = abstract.replace('\n', ' ').replace('- ', '')
|
39 |
|
40 |
return cleaned_abstract
|
41 |
|
42 |
+
# Function to summarize text
|
43 |
+
def summarize_text(text):
|
44 |
+
# Initialize the summarization pipeline with the summarization model
|
45 |
+
summarizer = pipeline(
|
46 |
+
"summarization",
|
47 |
+
"pszemraj/led-base-book-summary",
|
48 |
+
device=0 if torch.cuda.is_available() else -1,
|
49 |
+
)
|
50 |
|
51 |
+
# Generate the summary
|
52 |
+
result = summarizer(
|
53 |
+
text,
|
54 |
+
min_length=8,
|
55 |
+
max_length=25,
|
56 |
+
no_repeat_ngram_size=3,
|
57 |
+
encoder_no_repeat_ngram_size=3,
|
58 |
+
repetition_penalty=3.5,
|
59 |
+
num_beams=4,
|
60 |
+
do_sample=False,
|
61 |
+
early_stopping=True,
|
62 |
+
)
|
63 |
+
# Extract the first sentence from the summary
|
64 |
+
first_sentence = re.split(r'(?<=[.:;!?])\s', result[0]['summary_text'])[0]
|
65 |
+
|
66 |
+
return first_sentence
|
67 |
+
|
68 |
+
# Function for text-to-speech
|
69 |
def text_to_speech(text):
|
70 |
+
# Check if CUDA is available and set the device accordingly
|
71 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
72 |
+
|
73 |
+
# Load the TTS model and task from Hugging Face Hub
|
74 |
models, cfg, task = load_model_ensemble_and_task_from_hf_hub(
|
75 |
+
"facebook/fastspeech2-en-ljspeech", # Or another TTS model of your choice
|
76 |
arg_overrides={"vocoder": "hifigan", "fp16": False}
|
77 |
)
|
78 |
+
|
79 |
+
# Ensure the model is on the correct device
|
80 |
+
model = models[0].to(device)
|
81 |
+
|
82 |
+
# Update the config with the data config from the task
|
83 |
TTSHubInterface.update_cfg_with_data_cfg(cfg, task.data_cfg)
|
84 |
+
|
85 |
+
# Build the generator
|
86 |
generator = task.build_generator([model], cfg)
|
87 |
+
|
88 |
+
# Get the model input from the text
|
89 |
sample = TTSHubInterface.get_model_input(task, text)
|
90 |
+
sample["net_input"]["src_tokens"] = sample["net_input"]["src_tokens"].to(device)
|
91 |
+
sample["net_input"]["src_lengths"] = sample["net_input"]["src_lengths"].to(device)
|
92 |
+
|
93 |
+
# Generate the waveform
|
94 |
wav, rate = TTSHubInterface.get_prediction(task, model, generator, sample)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
95 |
|
96 |
+
# Move the waveform to CPU if it's on GPU
|
97 |
+
if wav.is_cuda:
|
98 |
+
wav = wav.cpu()
|
99 |
+
|
100 |
+
# Write the waveform to a temporary file and return the file path
|
101 |
+
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as tmp_file:
|
102 |
+
sf.write(tmp_file.name, wav.numpy(), rate)
|
103 |
+
return tmp_file.name
|
104 |
+
|
105 |
+
def process_pdf(uploaded_file):
|
106 |
+
"""
|
107 |
+
Process the uploaded PDF file to extract, summarize the abstract, and convert it to speech.
|
108 |
+
"""
|
109 |
+
abstract = extract_and_clean_abstract(uploaded_file)
|
110 |
+
summary = summarize_text(abstract)
|
111 |
+
audio_output = text_to_speech(summary)
|
112 |
+
return audio_output
|
113 |
+
|
114 |
+
# Create Gradio interface
|
115 |
iface = gr.Interface(
|
116 |
fn=process_pdf,
|
117 |
+
inputs=gr.File(label="Upload PDF"),
|
|
|
|
|
|
|
118 |
outputs=gr.Audio(label="Audio Summary"),
|
119 |
title="PDF Abstract to Speech",
|
120 |
+
description="Upload a PDF file to extract its abstract, summarize it, and convert the summary to speech."
|
121 |
)
|
122 |
|
123 |
+
# Run the Gradio app
|
124 |
+
iface.launch()
|
|