Spaces:
Running
Running
import glob | |
import json | |
import os | |
from dataclasses import dataclass | |
import numpy as np | |
import dateutil | |
import src.display.formatting as formatting | |
import src.display.utils as utils | |
import src.submission.check_validity as check_validity | |
class EvalResult: | |
eval_name: str # org_model_precision (uid) | |
full_model: str # org/model (path on hub) | |
org: str | |
model: str | |
revision: str # commit hash, "" if main | |
results: dict | |
precision: utils.Precision = utils.Precision.Unknown | |
model_type: utils.ModelType = utils.ModelType.Unknown # Pretrained, fine tuned, ... | |
weight_type: utils.WeightType = utils.WeightType.Original # Original or Adapter | |
architecture: str = "Unknown" | |
license: str = "?" | |
likes: int = 0 | |
num_params: int = 0 | |
date: str = "" # submission date of request file | |
still_on_hub: bool = False | |
def init_from_json_file(self, json_filepath): | |
"""Inits the result from the specific model result file""" | |
with open(json_filepath) as fp: | |
data = json.load(fp) | |
print('json_filepath',json_filepath) | |
print(data) | |
config = data.get("config") | |
print(config) | |
# Precision | |
precision = utils.Precision.from_str(config.get("model_dtype")) | |
# Get model and org | |
full_model = config.get("model_name", config.get("model_args", None)) | |
org, model = full_model.split("/", 1) if "/" in full_model else (None, full_model) | |
if org: | |
result_key = f"{org}_{model}_{precision.value.name}" | |
else: | |
result_key = f"{model}_{precision.value.name}" | |
still_on_hub, _, model_config = check_validity.is_model_on_hub( | |
full_model, config.get("model_sha", "main"), trust_remote_code=True, | |
test_tokenizer=False) | |
if model_config: | |
architecture = ";".join(getattr(model_config, "architectures", ["?"])) | |
else: | |
architecture = "?" | |
# Extract results available in this file (some results are split in several files) | |
results = {} | |
for task in utils.Tasks: | |
#print(task) | |
task = task.value | |
#print(task.benchmark) | |
#print(task.metric) | |
#print(task.col_name) | |
#print(task.value) | |
if isinstance(task.metric, str): | |
# accs = np.array([v.get(task.metric, None) for k, v in data["results"].items() if | |
# task.benchmark == k and isinstance(v, dict)]) | |
# accs = np.array([np.around(v*100, decimals=0) for k, v in data["results"].items() if task.benchmark == k]) | |
accs = [] | |
import math | |
for k, v in data["results"].items(): | |
if task.benchmark == k: | |
if isinstance(v, (int, float)) and not math.isnan(v): | |
accs.append(np.around(v * 100, decimals=0)) | |
elif isinstance(v, list): | |
accs.extend([np.around(x * 100, decimals=0) for x in v if | |
isinstance(x, (int, float)) and not math.isnan(x)]) | |
else: | |
# 跳过 NaN 或不符合条件的值 | |
accs.append(None) | |
accs = np.array([x for x in accs if x is not None]) | |
accs = accs[accs != None] | |
results[task.benchmark] = accs | |
elif isinstance(task.metric, list): | |
accs = np.array([str(v.get(task.metric, None)) for k, v in data["results"].items() if | |
task.benchmark == k and isinstance(v, dict)]) | |
accs = accs[accs != None] | |
results[task.benchmark] = accs | |
else: | |
print(f"Skipping task with unhandled metric type: {type(task.metric)}") | |
# # We average all scores of a given metric (not all metrics are present in all files) | |
# accs = np.array([v.get(task.metric, None) for k, v in data["results"].items() if task.benchmark == k]) | |
# | |
# results[task.benchmark] = accs | |
return self( | |
eval_name=result_key, | |
full_model=full_model, | |
org=org, | |
model=model, | |
results=results, | |
precision=precision, | |
revision= config.get("model_sha", ""), | |
still_on_hub=still_on_hub, | |
architecture=architecture | |
) | |
def update_with_request_file(self, requests_path): | |
"""Finds the relevant request file for the current model and updates info with it""" | |
all_files_before = os.listdir(requests_path) | |
print("test the variable:", all_files_before) | |
print(self.full_model) | |
#print(self.precision.value.name) | |
request_file = get_request_file_for_model(requests_path, self.full_model) | |
print("file name:",request_file) | |
#all_files = os.listdir(request_file) | |
#print("Files in the folder:", all_files) | |
try: | |
with open(request_file, "r") as f: | |
request = json.load(f) | |
print(request) | |
self.model_type = utils.ModelType.from_str(request.get("model_type", "")) | |
#self.weight_type = utils.WeightType[request.get("weight_type", "Original")] | |
self.license = request.get("license", "?") | |
self.likes = request.get("likes", 0) | |
self.num_params = int(float(request.get("params", "0").replace('B', ''))) | |
self.date = request.get("submitted_time", "") | |
# print(self.license) | |
print('updated:', self) | |
except FileNotFoundError: | |
print(f"Could not find request file for {self.org}/{self.model}") | |
except json.JSONDecodeError: | |
print(f"Error decoding JSON in request file for {self.org}/{self.model}") | |
def to_dict(self): | |
"""Converts the Eval Result to a dict compatible with our dataframe display""" | |
data_dict = { | |
"eval_name": self.eval_name, # not a column, just a save name, | |
utils.AutoEvalColumn.precision.name: self.precision.value.name, | |
utils.AutoEvalColumn.model_type.name: self.model_type.value.name, | |
#utils.AutoEvalColumn.model_type_symbol.name: self.model_type.value.symbol, | |
utils.AutoEvalColumn.weight_type.name: self.weight_type.value.name, | |
utils.AutoEvalColumn.architecture.name: self.architecture, | |
utils.AutoEvalColumn.model.name: formatting.make_clickable_model(self.full_model), | |
utils.AutoEvalColumn.dummy.name: self.full_model, | |
# utils.AutoEvalColumn.revision.name: self.revision, | |
utils.AutoEvalColumn.license.name: self.license, | |
utils.AutoEvalColumn.likes.name: self.likes, | |
utils.AutoEvalColumn.params.name: self.num_params, | |
utils.AutoEvalColumn.still_on_hub.name: self.still_on_hub, | |
} | |
for task in utils.Tasks: | |
data_dict[task.value.col_name] = self.results[task.value.benchmark] | |
return data_dict | |
def get_request_file_for_model(requests_path, model_name): | |
"""Selects the correct request file for a given model. Only keeps runs tagged as FINISHED""" | |
request_files = os.path.join( | |
requests_path, | |
f"{model_name}.json", | |
) | |
#request_files = glob.glob(request_files) | |
# Select correct request file (precision) | |
# request_file = "" | |
# request_files = sorted(request_files, reverse=True) | |
# for tmp_request_file in request_files: | |
# with open(tmp_request_file, "r") as f: | |
# req_content = json.load(f) | |
# # if ( | |
# # req_content["status"] in ["FINISHED"] | |
# # and req_content["precision"] == precision.split(".")[-1] | |
# # ): | |
# # request_file = tmp_request_file | |
return request_files | |
def get_raw_eval_results(results_path: str, requests_path: str) -> list[EvalResult]: | |
"""From the path of the results folder root, extract all needed info for results""" | |
model_result_filepaths = [] | |
print("results_path", results_path) | |
for root, _, files in os.walk(results_path): | |
print("file",files) | |
for f in files: | |
if f.endswith(".json"): | |
model_result_filepaths.extend([os.path.join(root, f)]) | |
print("model_result_filepaths:", model_result_filepaths) | |
# exit() | |
eval_results = {} | |
for model_result_filepath in model_result_filepaths: | |
# Creation of result | |
eval_result = EvalResult.init_from_json_file(model_result_filepath) | |
print("request_path:",requests_path) | |
eval_result.update_with_request_file(requests_path) | |
print(eval_result) | |
# Store results of same eval together | |
eval_name = eval_result.eval_name | |
if eval_name in eval_results.keys(): | |
eval_results[eval_name].results.update({k: v for k, v in | |
eval_result.results.items() if v is not None}) | |
else: | |
eval_results[eval_name] = eval_result | |
results = [] | |
for v in eval_results.values(): | |
try: | |
v.to_dict() # we test if the dict version is complete | |
results.append(v) | |
except KeyError: # not all eval values present | |
continue | |
return results | |