|
from abc import ABC |
|
from langchain.llms.base import LLM |
|
from typing import Optional, List |
|
from models.loader import LoaderCheckPoint |
|
from models.base import (BaseAnswer, |
|
AnswerResult) |
|
|
|
|
|
class ChatGLM(BaseAnswer, LLM, ABC): |
|
max_token: int = 10000 |
|
temperature: float = 0.01 |
|
top_p = 0.9 |
|
checkPoint: LoaderCheckPoint = None |
|
|
|
history_len: int = 10 |
|
|
|
def __init__(self, checkPoint: LoaderCheckPoint = None): |
|
super().__init__() |
|
self.checkPoint = checkPoint |
|
|
|
@property |
|
def _llm_type(self) -> str: |
|
return "ChatGLM" |
|
|
|
@property |
|
def _check_point(self) -> LoaderCheckPoint: |
|
return self.checkPoint |
|
|
|
@property |
|
def _history_len(self) -> int: |
|
return self.history_len |
|
|
|
def set_history_len(self, history_len: int = 10) -> None: |
|
self.history_len = history_len |
|
|
|
def _call(self, prompt: str, stop: Optional[List[str]] = None) -> str: |
|
print(f"__call:{prompt}") |
|
response, _ = self.checkPoint.model.chat( |
|
self.checkPoint.tokenizer, |
|
prompt, |
|
history=[], |
|
max_length=self.max_token, |
|
temperature=self.temperature |
|
) |
|
print(f"response:{response}") |
|
print(f"+++++++++++++++++++++++++++++++++++") |
|
return response |
|
|
|
def generatorAnswer(self, prompt: str, |
|
history: List[List[str]] = [], |
|
streaming: bool = False): |
|
|
|
if streaming: |
|
history += [[]] |
|
for inum, (stream_resp, _) in enumerate(self.checkPoint.model.stream_chat( |
|
self.checkPoint.tokenizer, |
|
prompt, |
|
history=history[-self.history_len:-1] if self.history_len > 1 else [], |
|
max_length=self.max_token, |
|
temperature=self.temperature |
|
)): |
|
|
|
history[-1] = [prompt, stream_resp] |
|
answer_result = AnswerResult() |
|
answer_result.history = history |
|
answer_result.llm_output = {"answer": stream_resp} |
|
yield answer_result |
|
else: |
|
response, _ = self.checkPoint.model.chat( |
|
self.checkPoint.tokenizer, |
|
prompt, |
|
history=history[-self.history_len:] if self.history_len > 0 else [], |
|
max_length=self.max_token, |
|
temperature=self.temperature |
|
) |
|
self.checkPoint.clear_torch_cache() |
|
history += [[prompt, response]] |
|
answer_result = AnswerResult() |
|
answer_result.history = history |
|
answer_result.llm_output = {"answer": response} |
|
yield answer_result |
|
|
|
|
|
|