Spaces:
Runtime error
Runtime error
Upload xaven_audio.ipynb
Browse files- xaven_audio.ipynb +419 -0
xaven_audio.ipynb
ADDED
|
@@ -0,0 +1,419 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cells": [
|
| 3 |
+
{
|
| 4 |
+
"cell_type": "code",
|
| 5 |
+
"execution_count": null,
|
| 6 |
+
"metadata": {
|
| 7 |
+
"colab": {
|
| 8 |
+
"background_save": true
|
| 9 |
+
},
|
| 10 |
+
"id": "ASOVL50_1iP0"
|
| 11 |
+
},
|
| 12 |
+
"outputs": [],
|
| 13 |
+
"source": [
|
| 14 |
+
"# This cell installs a minimal package called 'snac' quietly (-q suppresses output)\n",
|
| 15 |
+
"# %%capture ensures that any output or errors from this cell are not shown\n",
|
| 16 |
+
"# %%bash runs the command as a bash shell script within the notebook\n",
|
| 17 |
+
"# Purpose: Set up a minimal environment with required package(s) for the MVP (Minimum Viable Product)\n",
|
| 18 |
+
"\n",
|
| 19 |
+
"%%capture\n",
|
| 20 |
+
"%%bash\n",
|
| 21 |
+
"pip install -q snac\n"
|
| 22 |
+
]
|
| 23 |
+
},
|
| 24 |
+
{
|
| 25 |
+
"cell_type": "code",
|
| 26 |
+
"execution_count": null,
|
| 27 |
+
"metadata": {
|
| 28 |
+
"colab": {
|
| 29 |
+
"background_save": true
|
| 30 |
+
},
|
| 31 |
+
"id": "ZcwcX6AW2TAf",
|
| 32 |
+
"outputId": "3a81e287-b29d-43b6-aa91-6c090557379d"
|
| 33 |
+
},
|
| 34 |
+
"outputs": [
|
| 35 |
+
{
|
| 36 |
+
"name": "stdout",
|
| 37 |
+
"output_type": "stream",
|
| 38 |
+
"text": [
|
| 39 |
+
"torch: 2.6.0+cu124\n",
|
| 40 |
+
"cuda available: True\n",
|
| 41 |
+
"cuda device count: 1\n",
|
| 42 |
+
"current device: 0\n",
|
| 43 |
+
"device name: Tesla T4\n",
|
| 44 |
+
"bfloat16 supported: True\n"
|
| 45 |
+
]
|
| 46 |
+
}
|
| 47 |
+
],
|
| 48 |
+
"source": [
|
| 49 |
+
"# Import PyTorch library for deep learning tasks\n",
|
| 50 |
+
"import torch\n",
|
| 51 |
+
"\n",
|
| 52 |
+
"# Print the installed PyTorch version\n",
|
| 53 |
+
"print(\"torch:\", torch.__version__)\n",
|
| 54 |
+
"\n",
|
| 55 |
+
"# Check if CUDA (NVIDIA GPU acceleration) is available on this machine\n",
|
| 56 |
+
"print(\"cuda available:\", torch.cuda.is_available())\n",
|
| 57 |
+
"\n",
|
| 58 |
+
"# Print the number of CUDA-capable GPU devices detected\n",
|
| 59 |
+
"print(\"cuda device count:\", torch.cuda.device_count())\n",
|
| 60 |
+
"\n",
|
| 61 |
+
"# If a GPU is available, display details about the current GPU device\n",
|
| 62 |
+
"if torch.cuda.is_available():\n",
|
| 63 |
+
" print(\"current device:\", torch.cuda.current_device()) # GPU device index in use\n",
|
| 64 |
+
" print(\"device name:\", torch.cuda.get_device_name(torch.cuda.current_device())) # GPU model name\n",
|
| 65 |
+
" print(\"bfloat16 supported:\", torch.cuda.is_bf16_supported()) # Whether bfloat16 precision is supported (useful for efficient training)\n",
|
| 66 |
+
"else:\n",
|
| 67 |
+
" # If no GPU is found, notify that computation will be done on CPU, which is slower\n",
|
| 68 |
+
" print(\"No GPU detected — we'll run on CPU (slower).\")"
|
| 69 |
+
]
|
| 70 |
+
},
|
| 71 |
+
{
|
| 72 |
+
"cell_type": "code",
|
| 73 |
+
"execution_count": null,
|
| 74 |
+
"metadata": {
|
| 75 |
+
"colab": {
|
| 76 |
+
"background_save": true
|
| 77 |
+
},
|
| 78 |
+
"id": "eKMY8bdT2zoj"
|
| 79 |
+
},
|
| 80 |
+
"outputs": [],
|
| 81 |
+
"source": [
|
| 82 |
+
"# Import PyTorch for tensor computations and model handling\n",
|
| 83 |
+
"import torch\n",
|
| 84 |
+
"\n",
|
| 85 |
+
"# Import tokenizer and causal language model classes from Hugging Face transformers library\n",
|
| 86 |
+
"from transformers import AutoTokenizer, AutoModelForCausalLM\n",
|
| 87 |
+
"\n",
|
| 88 |
+
"from snac import SNAC\n",
|
| 89 |
+
"\n",
|
| 90 |
+
"# Define the pre-trained voice synthesis model name to load from Hugging Face Hub\n",
|
| 91 |
+
"voice_model_name = \"webbigdata/VoiceCore\"\n",
|
| 92 |
+
"\n",
|
| 93 |
+
"# Define the SNAC model name (possibly for audio feature extraction or conditioning) to load from Hugging Face Hub\n",
|
| 94 |
+
"snac_model_name = \"hubertsiuzdak/snac_24khz\"\n"
|
| 95 |
+
]
|
| 96 |
+
},
|
| 97 |
+
{
|
| 98 |
+
"cell_type": "code",
|
| 99 |
+
"execution_count": null,
|
| 100 |
+
"metadata": {
|
| 101 |
+
"colab": {
|
| 102 |
+
"background_save": true
|
| 103 |
+
},
|
| 104 |
+
"id": "ixiO7XRu21is",
|
| 105 |
+
"outputId": "b130d165-fae6-4b5d-a007-b3181131ef68"
|
| 106 |
+
},
|
| 107 |
+
"outputs": [
|
| 108 |
+
{
|
| 109 |
+
"name": "stdout",
|
| 110 |
+
"output_type": "stream",
|
| 111 |
+
"text": [
|
| 112 |
+
"Loading VoiceCore model...\n"
|
| 113 |
+
]
|
| 114 |
+
}
|
| 115 |
+
],
|
| 116 |
+
"source": [
|
| 117 |
+
"# Choose data type for model tensors:\n",
|
| 118 |
+
"# Use bfloat16 precision if supported by the GPU for faster and more memory-efficient computation,\n",
|
| 119 |
+
"# otherwise fallback to float16 precision\n",
|
| 120 |
+
"dtype = torch.bfloat16 if torch.cuda.is_bf16_supported() else torch.float16\n",
|
| 121 |
+
"\n",
|
| 122 |
+
"# Inform the user that the VoiceCore voice generation model is being loaded\n",
|
| 123 |
+
"print(\"Loading VoiceCore model...\")"
|
| 124 |
+
]
|
| 125 |
+
},
|
| 126 |
+
{
|
| 127 |
+
"cell_type": "code",
|
| 128 |
+
"execution_count": null,
|
| 129 |
+
"metadata": {
|
| 130 |
+
"id": "GiabMUtc3D3Z"
|
| 131 |
+
},
|
| 132 |
+
"outputs": [],
|
| 133 |
+
"source": [
|
| 134 |
+
"# Load the pre-trained VoiceCore causal language model for voice generation:\n",
|
| 135 |
+
"# - from the specified model repository (voice_model_name)\n",
|
| 136 |
+
"# - using the selected data type (bfloat16 or float16) for optimized GPU usage\n",
|
| 137 |
+
"# - device_map=\"auto\" to automatically distribute the model across available devices (GPU/CPU)\n",
|
| 138 |
+
"# - use_cache=True enables caching past key values to speed up autoregressive generation\n",
|
| 139 |
+
"\n",
|
| 140 |
+
"voice_model = AutoModelForCausalLM.from_pretrained(\n",
|
| 141 |
+
" voice_model_name,\n",
|
| 142 |
+
" torch_dtype=dtype,\n",
|
| 143 |
+
" device_map=\"auto\",\n",
|
| 144 |
+
" use_cache=True\n",
|
| 145 |
+
")\n",
|
| 146 |
+
"\n",
|
| 147 |
+
"# Load the tokenizer associated with the VoiceCore model for converting text to tokens\n",
|
| 148 |
+
"voice_tokenizer = AutoTokenizer.from_pretrained(voice_model_name)"
|
| 149 |
+
]
|
| 150 |
+
},
|
| 151 |
+
{
|
| 152 |
+
"cell_type": "code",
|
| 153 |
+
"execution_count": null,
|
| 154 |
+
"metadata": {
|
| 155 |
+
"id": "gv7M0hlB3znv"
|
| 156 |
+
},
|
| 157 |
+
"outputs": [],
|
| 158 |
+
"source": [
|
| 159 |
+
"]print(\"Loading SNAC decoder...\")\n",
|
| 160 |
+
"\n",
|
| 161 |
+
"# Load the SNAC model from the specified repository for audio decoding or processing\n",
|
| 162 |
+
"snac_model = SNAC.from_pretrained(snac_model_name)\n",
|
| 163 |
+
"\n",
|
| 164 |
+
"# Move the SNAC model to CPU (assuming it may not require GPU or for compatibility)\n",
|
| 165 |
+
"snac_model.to(\"cpu\")\n",
|
| 166 |
+
"\n",
|
| 167 |
+
"# Confirm that all models have been loaded without issues\n",
|
| 168 |
+
"print(\"Models loaded successfully.\")"
|
| 169 |
+
]
|
| 170 |
+
},
|
| 171 |
+
{
|
| 172 |
+
"cell_type": "code",
|
| 173 |
+
"execution_count": null,
|
| 174 |
+
"metadata": {
|
| 175 |
+
"id": "aV72Fdh1-jYk"
|
| 176 |
+
},
|
| 177 |
+
"outputs": [],
|
| 178 |
+
"source": [
|
| 179 |
+
"import scipy.io.wavfile as wavfile\n",
|
| 180 |
+
"from IPython.display import Audio, display\n",
|
| 181 |
+
"import torchaudio # Added torchaudio for saving the waveform\n",
|
| 182 |
+
"\n",
|
| 183 |
+
"# Available voices\n",
|
| 184 |
+
"voices = [\n",
|
| 185 |
+
" \"matsukaze_male\", # Refreshing male\n",
|
| 186 |
+
" \"amitaro_female\", # Cheerful girl\n",
|
| 187 |
+
" \"naraku_female\", # Calm woman\n",
|
| 188 |
+
" \"shiguu_male\", # Mature boy\n",
|
| 189 |
+
" \"sayoko_female\", # Elderly woman\n",
|
| 190 |
+
" \"nekketsu_female\", # Hot-blooded heroine\n",
|
| 191 |
+
" \"dahara1_male\" # General male\n",
|
| 192 |
+
"]\n",
|
| 193 |
+
"\n",
|
| 194 |
+
"# The text to speak\n",
|
| 195 |
+
"text = \"what am i eating this night\"\n"
|
| 196 |
+
]
|
| 197 |
+
},
|
| 198 |
+
{
|
| 199 |
+
"cell_type": "code",
|
| 200 |
+
"execution_count": null,
|
| 201 |
+
"metadata": {
|
| 202 |
+
"id": "KkGFFMLw6xvu"
|
| 203 |
+
},
|
| 204 |
+
"outputs": [],
|
| 205 |
+
"source": [
|
| 206 |
+
"import random\n",
|
| 207 |
+
"\n",
|
| 208 |
+
"# Select a random voice from the predefined voices list to generate speech\n",
|
| 209 |
+
"voice_type = random.choice(voices)\n",
|
| 210 |
+
"\n",
|
| 211 |
+
"# Prepare the text prompt for the voice generation model:\n",
|
| 212 |
+
"# Append \"[neutral]\" emotion tag to the chosen voice for neutral tone synthesis\n",
|
| 213 |
+
"chosen_voice = voice_type + \"[neutral]\"\n",
|
| 214 |
+
"\n",
|
| 215 |
+
"# Format prompt by combining voice tag and input text to guide the model's output\n",
|
| 216 |
+
"prompt = f\"{chosen_voice}: {text}\"\n",
|
| 217 |
+
"\n",
|
| 218 |
+
"# Tokenize the prompt text to get input IDs for the model (PyTorch tensors)\n",
|
| 219 |
+
"input_ids = voice_tokenizer(prompt, return_tensors=\"pt\").input_ids\n",
|
| 220 |
+
"\n",
|
| 221 |
+
"# Define special tokens used for voice generation control:\n",
|
| 222 |
+
"# start_token marks the beginning of human speech segment\n",
|
| 223 |
+
"start_token = torch.tensor([[128259]], dtype=torch.int64)\n",
|
| 224 |
+
"\n",
|
| 225 |
+
"# end_tokens mark possible token IDs that indicate end of speech generation\n",
|
| 226 |
+
"end_tokens = torch.tensor([[128009, 128260, 128261]], dtype=torch.int64)\n"
|
| 227 |
+
]
|
| 228 |
+
},
|
| 229 |
+
{
|
| 230 |
+
"cell_type": "code",
|
| 231 |
+
"execution_count": null,
|
| 232 |
+
"metadata": {
|
| 233 |
+
"id": "ocyFxQbx605H"
|
| 234 |
+
},
|
| 235 |
+
"outputs": [],
|
| 236 |
+
"source": [
|
| 237 |
+
"# Add special start and end tokens to the input token sequence:\n",
|
| 238 |
+
"# Concatenate start_token at the beginning, input_ids in the middle, and end_tokens at the end along the token dimension\n",
|
| 239 |
+
"modified_input_ids = torch.cat([start_token, input_ids, end_tokens], dim=1)\n",
|
| 240 |
+
"\n",
|
| 241 |
+
"# Move the modified input tokens to the same device as the voice model (e.g., GPU) for faster processing\n",
|
| 242 |
+
"input_ids = modified_input_ids.to(voice_model.device)\n",
|
| 243 |
+
"\n",
|
| 244 |
+
"# Create an attention mask of ones with the same shape as input_ids to indicate all tokens should be attended to during inference\n",
|
| 245 |
+
"attention_mask = torch.ones_like(input_ids)"
|
| 246 |
+
]
|
| 247 |
+
},
|
| 248 |
+
{
|
| 249 |
+
"cell_type": "code",
|
| 250 |
+
"execution_count": null,
|
| 251 |
+
"metadata": {
|
| 252 |
+
"id": "tAN566Ch626k"
|
| 253 |
+
},
|
| 254 |
+
"outputs": [],
|
| 255 |
+
"source": [
|
| 256 |
+
"# 4) Generate audio tokens from the voice generation model based on the input prompt\n",
|
| 257 |
+
"\n",
|
| 258 |
+
"print(\"🎤 Generating voice tokens...\")\n",
|
| 259 |
+
"\n",
|
| 260 |
+
"# Generate token IDs representing the synthesized voice audio using autoregressive generation:\n",
|
| 261 |
+
"# - input_ids: tokenized prompt with start/end tokens\n",
|
| 262 |
+
"# - attention_mask: indicates tokens to attend to\n",
|
| 263 |
+
"# - max_new_tokens: limit max tokens generated to control output length\n",
|
| 264 |
+
"# - do_sample=True: sample tokens probabilistically for natural variation\n",
|
| 265 |
+
"# - temperature=0.6: controls randomness (lower = more focused)\n",
|
| 266 |
+
"# - top_p=0.9: nucleus sampling threshold to limit token pool\n",
|
| 267 |
+
"# - repetition_penalty=1.1: discourage repetitive tokens for more natural speech\n",
|
| 268 |
+
"# - eos_token_id=128258: token indicating end of sequence\n",
|
| 269 |
+
"# - use_cache=True: speed up generation with caching past states\n",
|
| 270 |
+
"\n",
|
| 271 |
+
"generated_ids = voice_model.generate(\n",
|
| 272 |
+
" input_ids=input_ids,\n",
|
| 273 |
+
" attention_mask=attention_mask,\n",
|
| 274 |
+
" max_new_tokens=8196,\n",
|
| 275 |
+
" do_sample=True,\n",
|
| 276 |
+
" temperature=0.6,\n",
|
| 277 |
+
" top_p=0.9,\n",
|
| 278 |
+
" repetition_penalty=1.1,\n",
|
| 279 |
+
" eos_token_id=128258,\n",
|
| 280 |
+
" use_cache=True\n",
|
| 281 |
+
")\n",
|
| 282 |
+
"\n",
|
| 283 |
+
"# Print the generated token IDs representing the synthesized voice audio\n",
|
| 284 |
+
"print(generated_ids)"
|
| 285 |
+
]
|
| 286 |
+
},
|
| 287 |
+
{
|
| 288 |
+
"cell_type": "code",
|
| 289 |
+
"execution_count": null,
|
| 290 |
+
"metadata": {
|
| 291 |
+
"id": "E5-f026j66ok"
|
| 292 |
+
},
|
| 293 |
+
"outputs": [],
|
| 294 |
+
"source": [
|
| 295 |
+
"# Extract the audio codes from the generated token sequence\n",
|
| 296 |
+
"\n",
|
| 297 |
+
"# Define tokens to locate and exclude:\n",
|
| 298 |
+
"# token_to_find marks the boundary before audio codes start\n",
|
| 299 |
+
"token_to_find = 128257\n",
|
| 300 |
+
"# token_to_remove is an end-of-sequence token to exclude\n",
|
| 301 |
+
"token_to_remove = 128258\n",
|
| 302 |
+
"\n",
|
| 303 |
+
"# Find all positions where token_to_find appears in generated_ids\n",
|
| 304 |
+
"token_indices = (generated_ids == token_to_find).nonzero(as_tuple=True)\n",
|
| 305 |
+
"\n",
|
| 306 |
+
"# If token_to_find exists, crop the generated_ids tensor to keep only tokens after its last occurrence\n",
|
| 307 |
+
"if len(token_indices[1]) > 0:\n",
|
| 308 |
+
" last_occurrence_idx = token_indices[1][-1].item()\n",
|
| 309 |
+
" cropped_tensor = generated_ids[:, last_occurrence_idx+1:]\n",
|
| 310 |
+
"else:\n",
|
| 311 |
+
" # If token_to_find is not found, keep the entire generated token sequence\n",
|
| 312 |
+
" cropped_tensor = generated_ids\n"
|
| 313 |
+
]
|
| 314 |
+
},
|
| 315 |
+
{
|
| 316 |
+
"cell_type": "code",
|
| 317 |
+
"execution_count": null,
|
| 318 |
+
"metadata": {
|
| 319 |
+
"id": "d2uTSNha68j8"
|
| 320 |
+
},
|
| 321 |
+
"outputs": [],
|
| 322 |
+
"source": [
|
| 323 |
+
"# Remove all occurrences of the token_to_remove (end token) from the cropped tensor\n",
|
| 324 |
+
"processed_row = cropped_tensor[0][cropped_tensor[0] != token_to_remove]\n",
|
| 325 |
+
"\n",
|
| 326 |
+
"# Convert the filtered tensor of tokens into a Python list for easier processing\n",
|
| 327 |
+
"code_list = processed_row.tolist()\n",
|
| 328 |
+
"\n",
|
| 329 |
+
"# Adjust the length of the code list to be a multiple of 7 (required by downstream processing)\n",
|
| 330 |
+
"new_length = (len(code_list) // 7) * 7\n",
|
| 331 |
+
"\n",
|
| 332 |
+
"# Trim the list to the new length and normalize token values by subtracting 128266\n",
|
| 333 |
+
"# This likely converts tokens into audio code indices starting from zero\n",
|
| 334 |
+
"code_list = [t - 128266 for t in code_list[:new_length]]"
|
| 335 |
+
]
|
| 336 |
+
},
|
| 337 |
+
{
|
| 338 |
+
"cell_type": "code",
|
| 339 |
+
"execution_count": null,
|
| 340 |
+
"metadata": {
|
| 341 |
+
"id": "9soI9X0F7Ag7"
|
| 342 |
+
},
|
| 343 |
+
"outputs": [],
|
| 344 |
+
"source": [
|
| 345 |
+
"# 6) Redistribute the processed audio codes into three separate SNAC layers\n",
|
| 346 |
+
"\n",
|
| 347 |
+
"# Initialize empty lists for each SNAC layer\n",
|
| 348 |
+
"layer_1, layer_2, layer_3 = [], [], []\n",
|
| 349 |
+
"\n",
|
| 350 |
+
"# Iterate over the code_list in chunks of 7 tokens each\n",
|
| 351 |
+
"for i in range(len(code_list) // 7):\n",
|
| 352 |
+
" # Append tokens to layer_1 and layer_2/3 with specific offsets to decode multi-layered representation\n",
|
| 353 |
+
" layer_1.append(code_list[7*i]) # First token goes to layer_1 as is\n",
|
| 354 |
+
" layer_2.append(code_list[7*i + 1] - 4096) # Second token shifted by 4096 for layer_2\n",
|
| 355 |
+
" layer_3.append(code_list[7*i + 2] - 8192) # Third token shifted by 8192 for layer_3\n",
|
| 356 |
+
" layer_3.append(code_list[7*i + 3] - 12288) # Fourth token shifted by 12288 for layer_3\n",
|
| 357 |
+
" layer_2.append(code_list[7*i + 4] - 16384) # Fifth token shifted by 16384 for layer_2\n",
|
| 358 |
+
" layer_3.append(code_list[7*i + 5] - 20480) # Sixth token shifted by 20480 for layer_3\n",
|
| 359 |
+
" layer_3.append(code_list[7*i + 6] - 24576) # Seventh token shifted by 24576 for layer_3\n",
|
| 360 |
+
"\n",
|
| 361 |
+
"# Convert each layer list to a PyTorch tensor and add a batch dimension with unsqueeze(0)\n",
|
| 362 |
+
"codes = [\n",
|
| 363 |
+
" torch.tensor(layer_1).unsqueeze(0),\n",
|
| 364 |
+
" torch.tensor(layer_2).unsqueeze(0),\n",
|
| 365 |
+
" torch.tensor(layer_3).unsqueeze(0)\n",
|
| 366 |
+
"]"
|
| 367 |
+
]
|
| 368 |
+
},
|
| 369 |
+
{
|
| 370 |
+
"cell_type": "code",
|
| 371 |
+
"execution_count": null,
|
| 372 |
+
"metadata": {
|
| 373 |
+
"id": "vlQ4CFq-7Ef6"
|
| 374 |
+
},
|
| 375 |
+
"outputs": [],
|
| 376 |
+
"source": [
|
| 377 |
+
"# 7) Decode the redistributed SNAC codes into a waveform audio tensor\n",
|
| 378 |
+
"print(\" Decoding audio...\")\n",
|
| 379 |
+
"audio = snac_model.decode(codes) # Convert SNAC codes back into raw audio waveform\n",
|
| 380 |
+
"\n",
|
| 381 |
+
"# Convert the PyTorch tensor audio to a NumPy array after removing batch dimension and moving to CPU\n",
|
| 382 |
+
"audio_np = audio.detach().squeeze().cpu().numpy()\n",
|
| 383 |
+
"\n",
|
| 384 |
+
"# 8) Save the decoded audio waveform as a WAV file at 24kHz sample rate\n",
|
| 385 |
+
"filename = \"first_voice.wav\"\n",
|
| 386 |
+
"wavfile.write(filename, 24000, audio_np)\n",
|
| 387 |
+
"print(f\"Audio saved as {filename}\")\n",
|
| 388 |
+
"\n",
|
| 389 |
+
"# Play the generated audio inline in the notebook with the correct sampling rate\n",
|
| 390 |
+
"display(Audio(audio_np, rate=24000))"
|
| 391 |
+
]
|
| 392 |
+
},
|
| 393 |
+
{
|
| 394 |
+
"cell_type": "code",
|
| 395 |
+
"execution_count": null,
|
| 396 |
+
"metadata": {
|
| 397 |
+
"id": "KyAyJSSeClL9"
|
| 398 |
+
},
|
| 399 |
+
"outputs": [],
|
| 400 |
+
"source": []
|
| 401 |
+
}
|
| 402 |
+
],
|
| 403 |
+
"metadata": {
|
| 404 |
+
"accelerator": "GPU",
|
| 405 |
+
"colab": {
|
| 406 |
+
"gpuType": "T4",
|
| 407 |
+
"provenance": []
|
| 408 |
+
},
|
| 409 |
+
"kernelspec": {
|
| 410 |
+
"display_name": "Python 3",
|
| 411 |
+
"name": "python3"
|
| 412 |
+
},
|
| 413 |
+
"language_info": {
|
| 414 |
+
"name": "python"
|
| 415 |
+
}
|
| 416 |
+
},
|
| 417 |
+
"nbformat": 4,
|
| 418 |
+
"nbformat_minor": 0
|
| 419 |
+
}
|