Xkev commited on
Commit
129beed
·
verified ·
1 Parent(s): 929ec82

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +12 -207
app.py CHANGED
@@ -1,5 +1,4 @@
1
  from transformers import MllamaForConditionalGeneration, AutoProcessor, TextIteratorStreamer
2
- from transformers import StoppingCriteria, StoppingCriteriaList
3
  from PIL import Image
4
  import requests
5
  import torch
@@ -9,161 +8,12 @@ from gradio import FileData
9
  import time
10
  import spaces
11
  import re
12
- import copy
13
-
14
  ckpt = "Xkev/Llama-3.2V-11B-cot"
15
  model = MllamaForConditionalGeneration.from_pretrained(ckpt,
16
  torch_dtype=torch.bfloat16).to("cuda")
17
  processor = AutoProcessor.from_pretrained(ckpt)
18
 
19
 
20
- class StopOnStrings(StoppingCriteria):
21
- def __init__(self, stop_strings, tokenizer):
22
- self.stop_strings = stop_strings
23
- self.tokenizer = tokenizer
24
-
25
- def __call__(self, input_ids, scores, **kwargs):
26
- generated_text = self.tokenizer.decode(input_ids[0], skip_special_tokens=True)
27
- for stop_string in self.stop_strings:
28
- if stop_string in generated_text:
29
- return True
30
- return False
31
-
32
- def judge(image, prompt, outputs, type="summary"):
33
- input_outputs = []
34
- kwargs = dict(do_sample=True, max_new_tokens=2048, temperature=0.6, top_p=0.9)
35
-
36
- hint = None
37
- if type == "all":
38
- judge_prompt = f'Now you act as a judge, helping me determine which of the two texts I provide better answers the question.'
39
- recall_prompt = ""
40
- for output in outputs:
41
- input_outputs.append(output)
42
- elif type == "sentence":
43
- judge_prompt = f'Now you act as a judge, helping me determine which of the two texts I provide is a better next sentence for the answer to the question.'
44
- recall_prompt = ""
45
- for output in outputs:
46
- sentences = output.split(".")
47
- if len(sentences) > 2:
48
- hint = ' '.join(sentences[:-2])
49
- input_outputs.append(sentences[-2])
50
- elif type == "summary":
51
- judge_prompt = f'Now you act as a judge, helping me determine which of the two texts I provide better provides a summary of what it should do to solve the question. The summary should focus on outlining the main approach instead of stating specific analytical reasoning or math formula.'
52
- recall_prompt = f'Please note that a better summary should focus on outlining the main approach instead of stating specific analytical reasoning or math formula.'
53
- for output in outputs:
54
- input_match = re.search(r'<SUMMARY>(.*?)</SUMMARY>', output, re.DOTALL)
55
- if input_match:
56
- input_outputs.append(input_match.group(1))
57
- elif type == "caption":
58
- judge_prompt = f'Now you act as a judge, helping me determine which of the two texts I provide better summarizes the information in the image related to the question, and has fewer errors. It is essential that the captions are as thorough as possible while remaining accurate, capturing as many details as possible rather than providing only general commentary.'
59
- recall_prompt = f'Please note that a better caption should be as thorough as possible while remaining accurate, capturing as many details as possible rather than providing only general commentary.'
60
- for output in outputs:
61
- input_match = re.search(r'<CAPTION>(.*?)</CAPTION>', output, re.DOTALL)
62
- if input_match:
63
- hint_match = re.search(r'<SUMMARY>(.*?)</SUMMARY>', output, re.DOTALL)
64
- if hint_match:
65
- input_outputs.append(input_match.group(1))
66
- elif type == "reasoning":
67
- judge_prompt = f'Now you act as a judge, helping me determine which of the two texts I provide better explains the reasoning process to solve the question, and has fewer errors. Begin by thoroughly reviewing the question, followed by an in-depth examination of each answer individually, noting any differences. Subsequently, analyze these differences to determine which response demonstrates stronger reasoning and provide a clear conclusion.'
68
- recall_prompt = f'Begin by thoroughly reviewing the question, followed by an in-depth examination of each answer individually, noting any differences. Subsequently, analyze these differences to determine which response demonstrates stronger reasoning and provide a clear conclusion.'
69
- for output in outputs:
70
- input_match = re.search(r'<REASONING>(.*?)</REASONING>', output, re.DOTALL)
71
- if input_match:
72
- hint_match = re.search(r'<SUMMARY>(.*?)</SUMMARY>', output, re.DOTALL)
73
- if hint_match:
74
- hint_caption_match = re.search(r'<CAPTION>(.*?)</CAPTION>', output, re.DOTALL)
75
- if hint_caption_match:
76
- hint = hint_caption_match.group(1)
77
- input_outputs.append(input_match.group(1))
78
- elif type == "conclusion":
79
- judge_prompt = f'Now you act as a judge, helping me determine which of the two texts I provide offers a more effective conclusion to the question. The conclusion should align with the reasoning presented in the hint. The conclusion should never refuse to answer the question.'
80
- recall_prompt = f'Please note that a better conclusion should align with the reasoning presented in the hint. The conclusion should never refuse to answer the question.'
81
- for output in outputs:
82
- input_match = re.search(r'<CONCLUSION>(.*?)</CONCLUSION>', output, re.DOTALL)
83
- if input_match:
84
- hint_match = re.search(r'<SUMMARY>(.*?)</SUMMARY>', output, re.DOTALL)
85
- if hint_match:
86
- hint_caption_match = re.search(r'<CAPTION>(.*?)</CAPTION>', output, re.DOTALL)
87
- if hint_caption_match:
88
- hint_reasoning_match = re.search(r'<REASONING>(.*?)</REASONING>', output, re.DOTALL)
89
- if hint_reasoning_match:
90
- hint = hint_caption_match.group(1) + hint_reasoning_match.group(1)
91
- input_outputs.append(input_match.group(1))
92
-
93
- if type == "reasoning":
94
- reasoning_prompt = f"""Now you act as a judge, helping me determine whether the reasoning process in the given text is correct and accurate based on the given information.
95
- You should assume that the given information about the image is correct.
96
- You should only consider the reasoning process itself, not the correctness of the background information.
97
- If the reasoning process invovles any calculations, you should verify the accuracy of the calculations.
98
- You should output 'correct' if you don't find any errors in the reasoning process, and 'incorrect' if you find any errors."""
99
-
100
- reasoning_prompt_1 = reasoning_prompt + f'\n\nGiven Information: {hint}' + f'\n\nReasoning Process: {input_outputs[0]}'
101
- reasoning_message_1 = [
102
- {'role': 'user', 'content': [
103
- {'type': 'text', 'text': reasoning_prompt_1}
104
- ]}
105
- ]
106
- reasoning_input_text_1 = processor.apply_chat_template(reasoning_message_1, add_generation_prompt=True)
107
- reasoning_inputs_1 = processor(None, reasoning_input_text_1, return_tensors='pt')
108
- reasoning_output_1 = model.generate(**reasoning_inputs_1, **kwargs)
109
- reasoning_output_text_1 = processor.decode(reasoning_output_1[0][reasoning_inputs_1['input_ids'].shape[1]:]).replace('<|eot_id|>', '').replace('<|endoftext|>', '')
110
- if "incorrect" in reasoning_output_text_1:
111
- #logging
112
- with open('log.jsonl', 'a') as f:
113
- json_obj = {
114
- "prompt": prompt,
115
- "outputs": outputs,
116
- "judge_output": reasoning_output_text_1
117
- }
118
- f.write(json.dumps(json_obj) + '\n')
119
- return 1
120
-
121
- reasoning_prompt_2 = reasoning_prompt + f'\n\nGiven Information: {hint}' + f'\n\nReasoning Process: {input_outputs[1]}'
122
- reasoning_message_2 = [
123
- {'role': 'user', 'content': [
124
- {'type': 'text', 'text': reasoning_prompt_2}
125
- ]}
126
- ]
127
- reasoning_input_text_2 = processor.apply_chat_template(reasoning_message_2, add_generation_prompt=True)
128
- reasoning_inputs_2 = processor(None, reasoning_input_text_2, return_tensors='pt')
129
- reasoning_output_2 = model.generate(**reasoning_inputs_2, **kwargs)
130
- reasoning_output_text_2 = processor.decode(reasoning_output_2[0][reasoning_inputs_2['input_ids'].shape[1]:]).replace('<|eot_id|>', '').replace('<|endoftext|>', '')
131
- if "incorrect" in reasoning_output_text_2:
132
- #logging
133
- with open('log.jsonl', 'a') as f:
134
- json_obj = {
135
- "prompt": prompt,
136
- "outputs": outputs,
137
- "judge_output": reasoning_output_text_2
138
- }
139
- f.write(json.dumps(json_obj) + '\n')
140
- return 0
141
-
142
- judge_prompt += f'\n\nQuestion: {prompt}'
143
- if hint:
144
- judge_prompt += f'\n\nHint about the Question: {hint}'
145
- for i, output in enumerate(input_outputs):
146
- judge_prompt += f'\nRepsonse {i+1}: {output}'
147
- judge_prompt += f'\n\n{recall_prompt}'
148
- judge_prompt += f' Please strictly follow the following format requirements when outputting, and don’t have any other unnecessary words.'
149
- judge_prompt += f'\n\nOutput format: "Since [reason], I choose response [1/2]."'
150
-
151
- judge_message = [
152
- {'role': 'user', 'content': [
153
- {'type': 'image'},
154
- {'type': 'text', 'text': judge_prompt}
155
- ]}
156
- ]
157
- judge_input_text = processor.apply_chat_template(judge_message, add_generation_prompt=True)
158
- judge_inputs = processor(image, judge_input_text, return_tensors='pt')
159
- judge_output = model.generate(**judge_inputs, **kwargs)
160
- judge_output_text = processor.decode(judge_output[0][judge_inputs['input_ids'].shape[1]:]).replace('<|eot_id|>', '').replace('<|endoftext|>', '')
161
-
162
- if "I choose response 1" in judge_output_text:
163
- return 0
164
- else:
165
- return 1
166
-
167
  @spaces.GPU
168
  def bot_streaming(message, history, max_new_tokens=250):
169
 
@@ -210,64 +60,20 @@ def bot_streaming(message, history, max_new_tokens=250):
210
 
211
  generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=max_new_tokens, do_sample=True, temperature=0.6, top_p=0.9)
212
  generated_text = ""
213
-
214
- stages = ['<SUMMARY>', '<CAPTION>', '<REASONING>', '<CONCLUSION>']
215
- end_markers = ['</SUMMARY>', '</CAPTION>', '</REASONING>', '</CONCLUSION>']
216
-
217
- initial_length = len(inputs['input_ids'][0])
218
- input_ids = copy.deepcopy(inputs['input_ids'])
219
-
220
- for stage, end_marker in zip(stages, end_markers):
221
- stop_criteria = StoppingCriteriaList([StopOnStrings([end_marker], processor.tokenizer)])
222
-
223
- candidates = []
224
- for _ in range(2):
225
- generation_kwargs.update({
226
- 'stopping_criteria': stop_criteria
227
- })
228
-
229
- inputs = processor(image, input_ids, return_tensors='pt')
230
- output = model.generate(**inputs, **generation_kwargs)
231
-
232
- new_generated_ids = output[0]
233
-
234
- generated_text = processor.tokenizer.decode(new_generated_ids[initial_length:], skip_special_tokens=True)
235
-
236
- candidates.append({
237
- 'input_ids': new_generated_ids.unsqueeze(0),
238
- 'generated_text': generated_text,
239
- })
240
-
241
- while(len(candidates) > 1):
242
- candidate1 = candidates.pop(np.random.randint(len(candidates)))
243
- candidate2 = candidates.pop(np.random.randint(len(candidates)))
244
- outputs = [candidate1['generated_text'], candidate2['generated_text']]
245
- best_index = judge(image, prompt, outputs, type=stage[1:-1].lower())
246
- if best_index == 0:
247
- candidates.append(candidate1)
248
- else:
249
- candidates.append(candidate2)
250
-
251
- input_ids = candidates[0]['input_ids']
252
-
253
- final_output = processor.tokenizer.decode(input_ids[0][initial_length:], skip_special_tokens=True)
254
- final_output = re.sub(r"<(\w+)>", r"(Here begins the \1 stage)", final_output)
255
- final_output = re.sub(r"</(\w+)>", r"(Here ends the \1 stage)", final_output)
256
- return final_output
257
-
258
- # thread = Thread(target=model.generate, kwargs=generation_kwargs)
259
- # thread.start()
260
- # buffer = ""
261
 
262
- # for new_text in streamer:
263
- # buffer += new_text
264
- # generated_text_without_prompt = buffer
265
- # time.sleep(0.01)
 
 
 
 
266
 
267
- # buffer = re.sub(r"<(\w+)>", r"(Here begins the \1 stage)", buffer)
268
- # buffer = re.sub(r"</(\w+)>", r"(Here ends the \1 stage)", buffer)
269
 
270
- # yield buffer
271
 
272
 
273
  demo = gr.ChatInterface(fn=bot_streaming, title="LLaVA-CoT",
@@ -281,8 +87,7 @@ demo = gr.ChatInterface(fn=bot_streaming, title="LLaVA-CoT",
281
  )
282
  ],
283
  examples=[[{"text": "What is on the flower?", "files": ["./Example1.webp"]},512],
284
- [{"text": "How to make this pastry?", "files": ["./Example2.png"]},512],
285
- [{"text": f"Hint: Please answer the question and provide the correct option letter, e.g., A, B, C, D, at the end.\n Question: Subtract all tiny shiny balls. Subtract all purple objects. How many objects are left?\n Options:\n A. 4\n B. 8\n C. 2\n D. 6", "files": ["./reasoning.png"]},2048]],
286
  cache_examples=False,
287
  description="Upload an image, and start chatting about it. To learn more about LLaVA-CoT, visit [our GitHub page](https://github.com/PKU-YuanGroup/LLaVA-CoT). Note: Since Gradio currently does not support displaying the special markings in the output, we have replaced it with the expression (Here begins the X phase).",
288
  stop_btn="Stop Generation",
 
1
  from transformers import MllamaForConditionalGeneration, AutoProcessor, TextIteratorStreamer
 
2
  from PIL import Image
3
  import requests
4
  import torch
 
8
  import time
9
  import spaces
10
  import re
 
 
11
  ckpt = "Xkev/Llama-3.2V-11B-cot"
12
  model = MllamaForConditionalGeneration.from_pretrained(ckpt,
13
  torch_dtype=torch.bfloat16).to("cuda")
14
  processor = AutoProcessor.from_pretrained(ckpt)
15
 
16
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
17
  @spaces.GPU
18
  def bot_streaming(message, history, max_new_tokens=250):
19
 
 
60
 
61
  generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=max_new_tokens, do_sample=True, temperature=0.6, top_p=0.9)
62
  generated_text = ""
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
63
 
64
+ thread = Thread(target=model.generate, kwargs=generation_kwargs)
65
+ thread.start()
66
+ buffer = ""
67
+
68
+ for new_text in streamer:
69
+ buffer += new_text
70
+ generated_text_without_prompt = buffer
71
+ time.sleep(0.01)
72
 
73
+ buffer = re.sub(r"<(\w+)>", r"(Here begins the \1 stage)", buffer)
74
+ buffer = re.sub(r"</(\w+)>", r"(Here ends the \1 stage)", buffer)
75
 
76
+ yield buffer
77
 
78
 
79
  demo = gr.ChatInterface(fn=bot_streaming, title="LLaVA-CoT",
 
87
  )
88
  ],
89
  examples=[[{"text": "What is on the flower?", "files": ["./Example1.webp"]},512],
90
+ [{"text": "How to make this pastry?", "files": ["./Example2.png"]},512]],
 
91
  cache_examples=False,
92
  description="Upload an image, and start chatting about it. To learn more about LLaVA-CoT, visit [our GitHub page](https://github.com/PKU-YuanGroup/LLaVA-CoT). Note: Since Gradio currently does not support displaying the special markings in the output, we have replaced it with the expression (Here begins the X phase).",
93
  stop_btn="Stop Generation",