Spaces:
Sleeping
Sleeping
Commit
·
3742e69
1
Parent(s):
3a69823
final
Browse files- Dockerfile +2 -5
- streamlit_app.py +10 -46
Dockerfile
CHANGED
|
@@ -1,5 +1,5 @@
|
|
| 1 |
# Use official lightweight Python image
|
| 2 |
-
FROM python:3.
|
| 3 |
|
| 4 |
# Set environment variables to disable usage stats collection (to prevent write errors)
|
| 5 |
ENV STREAMLIT_BROWSER_GATHERUSAGESTATS=false
|
|
@@ -12,9 +12,6 @@ ENV HOME=/tmp
|
|
| 12 |
# Set working directory
|
| 13 |
WORKDIR /app
|
| 14 |
|
| 15 |
-
# Create directory to store index with correct permissions
|
| 16 |
-
RUN mkdir -p /app/index && chmod -R 777 /app/index
|
| 17 |
-
|
| 18 |
# Copy requirements and install
|
| 19 |
COPY requirements.txt .
|
| 20 |
RUN pip install --no-cache-dir -r requirements.txt
|
|
@@ -23,4 +20,4 @@ RUN pip install --no-cache-dir -r requirements.txt
|
|
| 23 |
COPY . .
|
| 24 |
|
| 25 |
# Run the app
|
| 26 |
-
CMD ["streamlit", "run", "streamlit_app.py", "--server.
|
|
|
|
| 1 |
# Use official lightweight Python image
|
| 2 |
+
FROM python:3.10-slim
|
| 3 |
|
| 4 |
# Set environment variables to disable usage stats collection (to prevent write errors)
|
| 5 |
ENV STREAMLIT_BROWSER_GATHERUSAGESTATS=false
|
|
|
|
| 12 |
# Set working directory
|
| 13 |
WORKDIR /app
|
| 14 |
|
|
|
|
|
|
|
|
|
|
| 15 |
# Copy requirements and install
|
| 16 |
COPY requirements.txt .
|
| 17 |
RUN pip install --no-cache-dir -r requirements.txt
|
|
|
|
| 20 |
COPY . .
|
| 21 |
|
| 22 |
# Run the app
|
| 23 |
+
CMD ["streamlit", "run", "streamlit_app.py", "--server.enableXsrfProtection=false", "--server.port=7860", "--server.address=0.0.0.0"]
|
streamlit_app.py
CHANGED
|
@@ -10,16 +10,6 @@ from langchain.text_splitter import RecursiveCharacterTextSplitter
|
|
| 10 |
from langchain.chains.question_answering import load_qa_chain
|
| 11 |
from langchain.prompts import PromptTemplate
|
| 12 |
from dotenv import load_dotenv
|
| 13 |
-
import logging
|
| 14 |
-
|
| 15 |
-
# ========================
|
| 16 |
-
# Logging Setup
|
| 17 |
-
# ========================
|
| 18 |
-
logging.basicConfig(
|
| 19 |
-
level=logging.INFO,
|
| 20 |
-
format="%(asctime)s [%(levelname)s] %(message)s"
|
| 21 |
-
)
|
| 22 |
-
logger = logging.getLogger(__name__)
|
| 23 |
|
| 24 |
# ========================
|
| 25 |
# 1️⃣ Configuration
|
|
@@ -28,11 +18,9 @@ logger = logging.getLogger(__name__)
|
|
| 28 |
load_dotenv()
|
| 29 |
api_key = os.getenv("GOOGLE_API_KEY")
|
| 30 |
if not api_key:
|
| 31 |
-
logger.error("GOOGLE_API_KEY not found. Please add it to your .env file.")
|
| 32 |
st.error("GOOGLE_API_KEY not found. Please add it to your .env file.")
|
| 33 |
st.stop()
|
| 34 |
|
| 35 |
-
logger.info("GOOGLE_API_KEY loaded successfully.")
|
| 36 |
genai.configure(api_key=api_key)
|
| 37 |
|
| 38 |
# ========================
|
|
@@ -45,19 +33,15 @@ def validate_file_sizes(uploaded_files):
|
|
| 45 |
total_size = 0
|
| 46 |
for file in uploaded_files:
|
| 47 |
size_mb = file.size / (1024 * 1024)
|
| 48 |
-
logger.info(f"Checking file: {file.name}, size: {size_mb:.2f} MB")
|
| 49 |
if size_mb > MAX_FILE_SIZE_MB:
|
| 50 |
-
logger.warning(f"{file.name} is too large ({size_mb:.2f} MB). Limit is {MAX_FILE_SIZE_MB} MB per file.")
|
| 51 |
st.warning(f"{file.name} is too large ({size_mb:.2f} MB). Limit is {MAX_FILE_SIZE_MB} MB per file.")
|
| 52 |
return False
|
| 53 |
total_size += size_mb
|
| 54 |
|
| 55 |
if total_size > MAX_TOTAL_SIZE_MB:
|
| 56 |
-
logger.warning(f"Total size of uploaded files is {total_size:.2f} MB. Limit is {MAX_TOTAL_SIZE_MB} MB in total.")
|
| 57 |
st.warning(f"Total size of uploaded files is {total_size:.2f} MB. Limit is {MAX_TOTAL_SIZE_MB} MB in total.")
|
| 58 |
return False
|
| 59 |
|
| 60 |
-
logger.info("All file sizes are within limits.")
|
| 61 |
return True
|
| 62 |
|
| 63 |
# ========================
|
|
@@ -66,7 +50,6 @@ def validate_file_sizes(uploaded_files):
|
|
| 66 |
def get_pdf_text(pdf_docs):
|
| 67 |
text = ""
|
| 68 |
for pdf in pdf_docs:
|
| 69 |
-
logger.info(f"Extracting text from PDF: {getattr(pdf, 'name', 'unknown')}")
|
| 70 |
pdf_reader = PdfReader(pdf)
|
| 71 |
for page in pdf_reader.pages:
|
| 72 |
content = page.extract_text()
|
|
@@ -75,12 +58,10 @@ def get_pdf_text(pdf_docs):
|
|
| 75 |
return text
|
| 76 |
|
| 77 |
def get_docx_text(docx_file):
|
| 78 |
-
logger.info(f"Extracting text from DOCX: {getattr(docx_file, 'name', 'unknown')}")
|
| 79 |
doc = Document(docx_file)
|
| 80 |
return "\n".join([para.text for para in doc.paragraphs])
|
| 81 |
|
| 82 |
def get_html_text(html_file):
|
| 83 |
-
logger.info(f"Extracting text from HTML: {getattr(html_file, 'name', 'unknown')}")
|
| 84 |
content = html_file.read()
|
| 85 |
soup = BeautifulSoup(content, "html.parser")
|
| 86 |
return soup.get_text()
|
|
@@ -89,19 +70,13 @@ def get_html_text(html_file):
|
|
| 89 |
# 4️⃣ Text Chunking and Vector Store
|
| 90 |
# ========================
|
| 91 |
def get_text_chunks(text):
|
| 92 |
-
logger.info(f"Splitting text into chunks. Text length: {len(text)}")
|
| 93 |
text_splitter = RecursiveCharacterTextSplitter(chunk_size=2000, chunk_overlap=200)
|
| 94 |
return text_splitter.split_text(text)
|
| 95 |
|
| 96 |
def get_vector_store(text_chunks):
|
| 97 |
-
logger.info(f"Creating vector store with {len(text_chunks)} chunks.")
|
| 98 |
embeddings = GoogleGenerativeAIEmbeddings(model="models/embedding-001")
|
| 99 |
vector_store = FAISS.from_texts(text_chunks, embedding=embeddings)
|
| 100 |
-
|
| 101 |
-
vector_store.save_local("/app/index/faiss_index")
|
| 102 |
-
logger.info("Vector store saved to /app/index/faiss_index")
|
| 103 |
-
except Exception as e:
|
| 104 |
-
logger.error(f"Failed to save vector store: {e}")
|
| 105 |
|
| 106 |
# ========================
|
| 107 |
# 5️⃣ Conversational Chain Setup
|
|
@@ -124,25 +99,15 @@ def get_conversational_chain():
|
|
| 124 |
return chain
|
| 125 |
|
| 126 |
def user_input(user_question):
|
| 127 |
-
logger.info(f"User question: {user_question}")
|
| 128 |
embeddings = GoogleGenerativeAIEmbeddings(model="models/embedding-001")
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
except Exception as e:
|
| 134 |
-
logger.error(f"Error loading vector store or searching: {e}")
|
| 135 |
-
st.error(f"Error loading vector store or searching: {e}")
|
| 136 |
-
return
|
| 137 |
|
| 138 |
chain = get_conversational_chain()
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
st.write("Reply:", response["output_text"])
|
| 142 |
-
logger.info("Response generated successfully.")
|
| 143 |
-
except Exception as e:
|
| 144 |
-
logger.error(f"Error generating response: {e}")
|
| 145 |
-
st.error(f"Error generating response: {e}")
|
| 146 |
|
| 147 |
# ========================
|
| 148 |
# 6️⃣ Streamlit App Layout
|
|
@@ -160,14 +125,15 @@ def main():
|
|
| 160 |
st.title("Upload & Process Files")
|
| 161 |
uploaded_files = st.file_uploader("Upload PDF, DOCX, or HTML files", accept_multiple_files=True, type=['pdf', 'docx', 'html'])
|
| 162 |
|
|
|
|
|
|
|
|
|
|
| 163 |
if st.button("Submit & Process"):
|
| 164 |
if not uploaded_files:
|
| 165 |
-
logger.warning("No files uploaded.")
|
| 166 |
st.warning("Please upload at least one file.")
|
| 167 |
return
|
| 168 |
|
| 169 |
if not validate_file_sizes(uploaded_files):
|
| 170 |
-
logger.warning("File size validation failed.")
|
| 171 |
return
|
| 172 |
|
| 173 |
with st.spinner("Processing files..."):
|
|
@@ -180,13 +146,11 @@ def main():
|
|
| 180 |
elif file.name.endswith(".html"):
|
| 181 |
full_text += get_html_text(file)
|
| 182 |
else:
|
| 183 |
-
logger.warning(f"Unsupported file type: {file.name}")
|
| 184 |
st.warning(f"Unsupported file type: {file.name}")
|
| 185 |
|
| 186 |
text_chunks = get_text_chunks(full_text)
|
| 187 |
get_vector_store(text_chunks)
|
| 188 |
st.success("Processing complete!")
|
| 189 |
-
logger.info("Processing complete!")
|
| 190 |
|
| 191 |
if __name__ == "__main__":
|
| 192 |
main()
|
|
|
|
| 10 |
from langchain.chains.question_answering import load_qa_chain
|
| 11 |
from langchain.prompts import PromptTemplate
|
| 12 |
from dotenv import load_dotenv
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 13 |
|
| 14 |
# ========================
|
| 15 |
# 1️⃣ Configuration
|
|
|
|
| 18 |
load_dotenv()
|
| 19 |
api_key = os.getenv("GOOGLE_API_KEY")
|
| 20 |
if not api_key:
|
|
|
|
| 21 |
st.error("GOOGLE_API_KEY not found. Please add it to your .env file.")
|
| 22 |
st.stop()
|
| 23 |
|
|
|
|
| 24 |
genai.configure(api_key=api_key)
|
| 25 |
|
| 26 |
# ========================
|
|
|
|
| 33 |
total_size = 0
|
| 34 |
for file in uploaded_files:
|
| 35 |
size_mb = file.size / (1024 * 1024)
|
|
|
|
| 36 |
if size_mb > MAX_FILE_SIZE_MB:
|
|
|
|
| 37 |
st.warning(f"{file.name} is too large ({size_mb:.2f} MB). Limit is {MAX_FILE_SIZE_MB} MB per file.")
|
| 38 |
return False
|
| 39 |
total_size += size_mb
|
| 40 |
|
| 41 |
if total_size > MAX_TOTAL_SIZE_MB:
|
|
|
|
| 42 |
st.warning(f"Total size of uploaded files is {total_size:.2f} MB. Limit is {MAX_TOTAL_SIZE_MB} MB in total.")
|
| 43 |
return False
|
| 44 |
|
|
|
|
| 45 |
return True
|
| 46 |
|
| 47 |
# ========================
|
|
|
|
| 50 |
def get_pdf_text(pdf_docs):
|
| 51 |
text = ""
|
| 52 |
for pdf in pdf_docs:
|
|
|
|
| 53 |
pdf_reader = PdfReader(pdf)
|
| 54 |
for page in pdf_reader.pages:
|
| 55 |
content = page.extract_text()
|
|
|
|
| 58 |
return text
|
| 59 |
|
| 60 |
def get_docx_text(docx_file):
|
|
|
|
| 61 |
doc = Document(docx_file)
|
| 62 |
return "\n".join([para.text for para in doc.paragraphs])
|
| 63 |
|
| 64 |
def get_html_text(html_file):
|
|
|
|
| 65 |
content = html_file.read()
|
| 66 |
soup = BeautifulSoup(content, "html.parser")
|
| 67 |
return soup.get_text()
|
|
|
|
| 70 |
# 4️⃣ Text Chunking and Vector Store
|
| 71 |
# ========================
|
| 72 |
def get_text_chunks(text):
|
|
|
|
| 73 |
text_splitter = RecursiveCharacterTextSplitter(chunk_size=2000, chunk_overlap=200)
|
| 74 |
return text_splitter.split_text(text)
|
| 75 |
|
| 76 |
def get_vector_store(text_chunks):
|
|
|
|
| 77 |
embeddings = GoogleGenerativeAIEmbeddings(model="models/embedding-001")
|
| 78 |
vector_store = FAISS.from_texts(text_chunks, embedding=embeddings)
|
| 79 |
+
vector_store.save_local("faiss_index")
|
|
|
|
|
|
|
|
|
|
|
|
|
| 80 |
|
| 81 |
# ========================
|
| 82 |
# 5️⃣ Conversational Chain Setup
|
|
|
|
| 99 |
return chain
|
| 100 |
|
| 101 |
def user_input(user_question):
|
|
|
|
| 102 |
embeddings = GoogleGenerativeAIEmbeddings(model="models/embedding-001")
|
| 103 |
+
new_db = FAISS.load_local("faiss_index", embeddings, allow_dangerous_deserialization=True)
|
| 104 |
+
docs = new_db.similarity_search(user_question)
|
| 105 |
+
|
| 106 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
| 107 |
|
| 108 |
chain = get_conversational_chain()
|
| 109 |
+
response = chain({"input_documents": docs, "question": user_question}, return_only_outputs=True)
|
| 110 |
+
st.write("Reply:", response["output_text"])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 111 |
|
| 112 |
# ========================
|
| 113 |
# 6️⃣ Streamlit App Layout
|
|
|
|
| 125 |
st.title("Upload & Process Files")
|
| 126 |
uploaded_files = st.file_uploader("Upload PDF, DOCX, or HTML files", accept_multiple_files=True, type=['pdf', 'docx', 'html'])
|
| 127 |
|
| 128 |
+
|
| 129 |
+
|
| 130 |
+
|
| 131 |
if st.button("Submit & Process"):
|
| 132 |
if not uploaded_files:
|
|
|
|
| 133 |
st.warning("Please upload at least one file.")
|
| 134 |
return
|
| 135 |
|
| 136 |
if not validate_file_sizes(uploaded_files):
|
|
|
|
| 137 |
return
|
| 138 |
|
| 139 |
with st.spinner("Processing files..."):
|
|
|
|
| 146 |
elif file.name.endswith(".html"):
|
| 147 |
full_text += get_html_text(file)
|
| 148 |
else:
|
|
|
|
| 149 |
st.warning(f"Unsupported file type: {file.name}")
|
| 150 |
|
| 151 |
text_chunks = get_text_chunks(full_text)
|
| 152 |
get_vector_store(text_chunks)
|
| 153 |
st.success("Processing complete!")
|
|
|
|
| 154 |
|
| 155 |
if __name__ == "__main__":
|
| 156 |
main()
|