Spaces:
Sleeping
Sleeping
import streamlit as st | |
import pickle | |
import pandas as pd | |
from sklearn.pipeline import Pipeline | |
import numpy as np | |
# Load the model and encoders | |
with open('model_penguin_706.pkl', 'rb') as file: | |
model, species_encoder, island_encoder, sex_encoder = pickle.load(file) | |
# Streamlit app layout | |
st.title('Penguin Species Prediction') | |
# Create user input fields | |
st.sidebar.header('Input Features') | |
# User inputs | |
species = st.sidebar.selectbox('Species', species_encoder.classes_) | |
island = st.sidebar.selectbox('Island', island_encoder.classes_) | |
sex = st.sidebar.selectbox('Sex', sex_encoder.classes_) | |
# Slider for numeric inputs | |
bill_length_mm = st.sidebar.slider('Bill Length (mm)', 30.0, 60.0, 45.0) | |
bill_depth_mm = st.sidebar.slider('Bill Depth (mm)', 10.0, 25.0, 18.0) | |
flipper_length_mm = st.sidebar.slider('Flipper Length (mm)', 170.0, 240.0, 200.0) | |
body_mass_g = st.sidebar.slider('Body Mass (g)', 2500.0, 6000.0, 4000.0) | |
# Add missing columns with default values | |
culmen_length_mm = 40.0 # Default value, update with realistic values if available | |
culmen_depth_mm = 15.0 # Default value, update with realistic values if available | |
# Prepare the input data (ensure columns are in the same order as expected by the model) | |
input_data = pd.DataFrame({ | |
'species': [species], | |
'island': [island], | |
'sex': [sex], | |
'bill_length_mm': [bill_length_mm], | |
'bill_depth_mm': [bill_depth_mm], | |
'flipper_length_mm': [flipper_length_mm], | |
'body_mass_g': [body_mass_g], | |
'culmen_length_mm': [culmen_length_mm], | |
'culmen_depth_mm': [culmen_depth_mm] | |
}) | |
# Check for NaN values in the input data | |
if input_data.isna().any().any(): | |
st.warning("Input data contains NaN values. Filling with default values.") | |
input_data = input_data.fillna(0) # Replace NaN values with 0 or appropriate value | |
# Apply encoding to categorical features (check column names here!) | |
input_data['species'] = species_encoder.transform(input_data['species']) | |
input_data['island'] = island_encoder.transform(input_data['island']) | |
input_data['sex'] = sex_encoder.transform(input_data['sex']) | |
# Ensure the columns are in the correct order | |
if isinstance(model, Pipeline): | |
preprocessor = model.named_steps.get('preprocessor') # Replace with actual step name if different | |
if preprocessor: | |
input_data = preprocessor.transform(input_data) # Apply any necessary transformations | |
# Make prediction | |
prediction = model.predict(input_data) | |
# Show the result | |
st.write(f'Predicted Species: {species_encoder.inverse_transform(prediction)}') | |