narinsak unawong
Update app.py
6df879d verified
raw
history blame
2.74 kB
import streamlit as st
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.pipeline import Pipeline
from sklearn.preprocessing import StandardScaler, OneHotEncoder
from sklearn.compose import ColumnTransformer
from sklearn.neighbors import KNeighborsClassifier
from sklearn.metrics import accuracy_score
# Load your data (replace with your actual data loading)
penguins = pd.read_csv('penguins_lter.csv') # Make sure 'penguins_lter.csv' is in your app's directory or accessible
# Data cleaning and preprocessing (same as your original code)
penguins_cleaned = penguins.dropna()
penguins_cleaned = penguins_cleaned.drop_duplicates()
# Numerical and Categorical Features (same as original code)
numerical_features = ['Culmen Length (mm)', 'Culmen Depth (mm)', 'Flipper Length (mm)', 'Body Mass (g)']
categorical_features = ['Island', 'Sex']
# Preprocessing pipeline (same as original code)
numerical_transformer = Pipeline(steps=[('scaler', StandardScaler())])
categorical_transformer = Pipeline(steps=[('onehot', OneHotEncoder(handle_unknown='ignore'))])
preprocessor = ColumnTransformer(transformers=[
('num', numerical_transformer, numerical_features),
('cat', categorical_transformer, categorical_features)
])
# Machine Learning pipeline (same as original code)
pipeline = Pipeline(steps=[
('preprocessor', preprocessor),
('classifier', KNeighborsClassifier())
])
# Streamlit app
st.title("Penguin Species Classification")
# Display the dataset (optional)
if st.checkbox("Show Dataset"):
st.write(penguins_cleaned)
# User input features
st.header("Enter Penguin Features:")
culmen_length = st.number_input("Culmen Length (mm)", min_value=0.0)
culmen_depth = st.number_input("Culmen Depth (mm)", min_value=0.0)
flipper_length = st.number_input("Flipper Length (mm)", min_value=0.0)
body_mass = st.number_input("Body Mass (g)", min_value=0.0)
island = st.selectbox("Island", penguins_cleaned['Island'].unique())
sex = st.selectbox("Sex", penguins_cleaned['Sex'].unique())
# Create a dataframe for the input
input_data = pd.DataFrame({
'Culmen Length (mm)': [culmen_length],
'Culmen Depth (mm)': [culmen_depth],
'Flipper Length (mm)': [flipper_length],
'Body Mass (g)': [body_mass],
'Island': [island],
'Sex': [sex]
})
# Make Prediction
if st.button('Predict'):
# Assuming 'species' is your target variable (same as original code)
X = penguins_cleaned.drop('Species', axis=1)
y = penguins_cleaned['Species']
# Fit the model
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
pipeline.fit(X_train, y_train)
prediction = pipeline.predict(input_data)
st.write(f"Predicted Species: {prediction[0]}")