narinsak unawong commited on
Commit
b79a1d7
·
verified ·
1 Parent(s): 6efa52c

Upload 3 files

Browse files
Files changed (3) hide show
  1. app.py +33 -0
  2. requirements.txt +5 -0
  3. svd_model.pkl +3 -0
app.py ADDED
@@ -0,0 +1,33 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ from surprise import SVD
3
+ import pandas as pd
4
+ import pickle
5
+
6
+ # Load data back from the file
7
+ with open('svd_model.pkl', 'rb') as file:
8
+ svd_model, merged_data, movies = pickle.load(file)
9
+
10
+ # Title for the app
11
+ st.title("Movie Recommendations")
12
+
13
+ # User input for user ID
14
+ user_id = st.number_input("Enter User ID", min_value=1, step=1)
15
+
16
+ # Get rated and unrated movies for the given user
17
+ rated_user_movies = merged_data[merged_data['userId'] == user_id]['title'].values
18
+ unrated_movies = movies[~movies['title'].isin(rated_user_movies)]['title']
19
+
20
+ # Make predictions on unrated movies
21
+ pred_ratings = [svd_model.predict(user_id, movie_id) for movie_id in unrated_movies]
22
+
23
+ # Sort predictions by estimated rating in descending order
24
+ sorted_predictions = sorted(pred_ratings, key=lambda x: x.est, reverse=True)
25
+
26
+ # Get top 10 movie recommendations
27
+ top_recommendations = sorted_predictions[:10]
28
+
29
+ # Display recommendations
30
+ st.write(f"\nTop 10 movie recommendations for User {user_id}:")
31
+ for recommendation in top_recommendations:
32
+ movie_title = movies[movies['title'] == recommendation.iid]['title'].values[0]
33
+ st.write(f"{movie_title} (Estimated Rating: {recommendation.est})")
requirements.txt ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ pandas
2
+ scikit-learn
3
+ pickle
4
+ streamlit
5
+ surprise
svd_model.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6632a316ac38946f937a76160c523dee16af7b740debd9716d830ed96849f3b4
3
+ size 14463353