Spaces:
Runtime error
Runtime error
# import spaces | |
import gradio as gr | |
import os | |
import sys | |
import argparse | |
import random | |
import time | |
from omegaconf import OmegaConf | |
import torch | |
import torchvision | |
from pytorch_lightning import seed_everything | |
from huggingface_hub import hf_hub_download | |
from einops import repeat | |
import torchvision.transforms as transforms | |
from utils.utils import instantiate_from_config | |
sys.path.insert(0, "scripts/evaluation") | |
from scripts.evaluation.funcs import ( | |
batch_ddim_sampling, | |
load_model_checkpoint, | |
get_latent_z, | |
save_videos | |
) | |
def download_model(): | |
REPO_ID = 'GraceZhao/DynamiCrafter-CIL-512' | |
ckpt_dir = './checkpoints/dynamicrafter_512_cil/' | |
filename_list = ['timenoise.ckpt'] | |
if not os.path.exists(ckpt_dir): | |
os.makedirs(ckpt_dir) | |
for filename in filename_list: | |
local_file = os.path.join(ckpt_dir, filename) | |
if not os.path.exists(local_file): | |
hf_hub_download(repo_id=REPO_ID, filename=filename, local_dir=ckpt_dir, force_download=True) | |
download_model() | |
ckpt_path='checkpoints/dynamicrafter_512_cil/timenoise.ckpt' | |
config_file='configs/inference_512_v1.0.yaml' | |
config = OmegaConf.load(config_file) | |
model_config = config.pop("model", OmegaConf.create()) | |
model_config['params']['unet_config']['params']['use_checkpoint']=False | |
model = instantiate_from_config(model_config) | |
assert os.path.exists(ckpt_path), "Error: checkpoint Not Found!" | |
model = load_model_checkpoint(model, ckpt_path) | |
model.eval() | |
model = model.cuda() | |
def infer(image, prompt, steps=50, cfg_scale=7.5, eta=1.0, fs=3, seed=123, ddpm_from=1000): | |
resolution = (320, 512) | |
save_fps = 8 | |
seed_everything(seed) | |
transform = transforms.Compose([ | |
transforms.Resize(resolution), | |
]) | |
torch.cuda.empty_cache() | |
print('start:', prompt, time.strftime('%Y-%m-%d %H:%M:%S',time.localtime(time.time()))) | |
start = time.time() | |
if steps > 60: | |
steps = 60 | |
batch_size=1 | |
channels = model.model.diffusion_model.out_channels | |
frames = model.temporal_length | |
h, w = resolution[0] // 8, resolution[1] // 8 | |
noise_shape = [batch_size, channels, frames, h, w] | |
# text cond | |
with torch.no_grad(), torch.cuda.amp.autocast(): | |
text_emb = model.get_learned_conditioning([prompt]) | |
# img cond | |
img_tensor = torch.from_numpy(image).permute(2, 0, 1).float().to(model.device) | |
img_tensor = (img_tensor / 255. - 0.5) * 2 | |
image_tensor_resized = transform(img_tensor) #3,256,256 | |
videos = image_tensor_resized.unsqueeze(0) # bchw | |
z = get_latent_z(model, videos.unsqueeze(2)) #bc,1,hw | |
img_tensor_repeat = repeat(z, 'b c t h w -> b c (repeat t) h w', repeat=frames) | |
cond_images = model.embedder(img_tensor.unsqueeze(0)) ## blc | |
img_emb = model.image_proj_model(cond_images) | |
imtext_cond = torch.cat([text_emb, img_emb], dim=1) | |
fs = torch.tensor([fs], dtype=torch.long, device=model.device) | |
cond = {"c_crossattn": [imtext_cond], "fs": fs, "c_concat": [img_tensor_repeat]} | |
## inference | |
batch_samples = batch_ddim_sampling(model, cond, noise_shape, n_samples=1, ddim_steps=steps, ddim_eta=eta, cfg_scale=cfg_scale, ddpm_from=ddpm_from) | |
## b,samples,c,t,h,w | |
video_path = './output.mp4' | |
save_videos(batch_samples, './', filenames=['output'], fps=save_fps) | |
return video_path | |
i2v_examples = [ | |
['prompts/512/7.png', 'Donkeys in traditional attire gallop across a lush green meadow.', 50, 7.5, 1.0, 24, 123,900], | |
['prompts/512/41.png', 'Rabbits playing in a river.', 50, 7.5, 1.0, 24, 123,900], | |
['prompts/512/32.png', 'Mountains under the starlight.', 50, 7.5, 1.0, 24, 123,900], | |
['prompts/512/14.png', 'A duck swimming in the lake.', 50, 7.5, 1.0, 24, 123,900], | |
['prompts/512/30.png', 'A soldier riding a horse.', 50, 7.5, 1.0, 24, 123,900], | |
['prompts/512/52.png', 'Fireworks exploding in the sky.', 50, 7.5, 1.0, 24, 123,900], | |
] | |
css = """#input_img {max-width: 1024px !important} #output_vid {max-width: 1024px; max-height: 576px}""" | |
with gr.Blocks(analytics_enabled=False, css=css) as demo: | |
gr.Markdown("<div align='center'> <h1> DynamiCrafter-CIL </span> </h1> \ | |
<h2 style='font-weight: 450; font-size: 1rem; margin: 0rem'>\ | |
<a href='https://gracezhao1997.github.io/'>Min Zhao</a>, \ | |
<a href='https://zhuhz22.github.io/'>Hongzhou Zhu</a>, \ | |
<a href='https://xiang-cd.github.io/'>Chendong Xiang</a>, \ | |
<a href='https://scholar.google.com/citations?user=0d80xSIAAAAJ&hl=en'>Kaiwen Zheng</a>, \ | |
<a href='https://zhenxuan00.github.io/'> Chongxuan Li</a>,\ | |
<a href='https://ml.cs.tsinghua.edu.cn/~jun/software.shtml'>Jun Zhu</a>,\ | |
</h2> \ | |
<a style='font-size:18px;color: #000000'>If DynamiCrafter is useful, please help star the </a>\ | |
<a style='font-size:18px;color: #000000' href='https://github.com/thu-ml/cond-image-leakage/'>[Github Repo]</a>\ | |
<a style='font-size:18px;color: #000000'>, which is important to Open-Source projects. Thanks!</a>\ | |
<a style='font-size:18px;color: #000000' href='https://arxiv.org/abs/2406.15735'> [ArXiv] </a>\ | |
<a style='font-size:18px;color: #000000' href='https://cond-image-leak.github.io/'> [Project Page] </a> </div>") | |
with gr.Tab(label='ImageAnimation_576x1024'): | |
with gr.Column(): | |
with gr.Row(): | |
with gr.Column(): | |
with gr.Row(): | |
i2v_input_image = gr.Image(label="Input Image",elem_id="input_img") | |
with gr.Row(): | |
i2v_input_text = gr.Text(label='Prompts') | |
with gr.Row(): | |
i2v_seed = gr.Slider(label='Random Seed', minimum=0, maximum=10000, step=1, value=123) | |
i2v_eta = gr.Slider(minimum=0.0, maximum=1.0, step=0.1, label='ETA', value=1.0, elem_id="i2v_eta") | |
i2v_cfg_scale = gr.Slider(minimum=1.0, maximum=15.0, step=0.5, label='CFG Scale', value=7.5, elem_id="i2v_cfg_scale") | |
with gr.Row(): | |
i2v_steps = gr.Slider(minimum=1, maximum=50, step=1, elem_id="i2v_steps", label="Sampling steps", value=30) | |
i2v_motion = gr.Slider(minimum=5, maximum=20, step=1, elem_id="i2v_motion", label="FPS", value=10) | |
i2v_ddpm_from = gr.Slider(minimum=840, maximum=1000, step=1, elem_id="i2v_motion", label="ddpm_from", value=900) | |
i2v_end_btn = gr.Button("Generate") | |
# with gr.Tab(label='Result'): | |
with gr.Row(): | |
i2v_output_video = gr.Video(label="Generated Video",elem_id="output_vid",autoplay=True,show_share_button=True) | |
gr.Examples(examples=i2v_examples, | |
inputs=[i2v_input_image, i2v_input_text, i2v_steps, i2v_cfg_scale, i2v_eta, i2v_motion, i2v_seed], | |
outputs=[i2v_output_video], | |
fn = infer, | |
cache_examples=True, | |
) | |
i2v_end_btn.click(inputs=[i2v_input_image, i2v_input_text, i2v_steps, i2v_cfg_scale, i2v_eta, i2v_motion, i2v_seed, i2v_ddpm_from], | |
outputs=[i2v_output_video], | |
fn = infer | |
) | |
demo.queue(max_size=12).launch(show_api=True) |