SEMat / sam2 /build_sam.py
XiaRho's picture
Init
8b4c6c7 verified
raw
history blame
7.16 kB
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
import logging
import torch
from hydra import compose
from hydra.utils import instantiate
from omegaconf import OmegaConf
def build_sam2(
config_file,
ckpt_path=None,
device="cuda",
mode="eval",
hydra_overrides_extra=[],
apply_postprocessing=True,
bbox_mask_matting_token = False,
matting_logits_res_add = False,
upscaled_embedding_res_add = True,
):
if apply_postprocessing:
hydra_overrides_extra = hydra_overrides_extra.copy()
hydra_overrides_extra += [
# dynamically fall back to multi-mask if the single mask is not stable
"++model.sam_mask_decoder_extra_args.dynamic_multimask_via_stability=true",
"++model.sam_mask_decoder_extra_args.dynamic_multimask_stability_delta=0.05",
"++model.sam_mask_decoder_extra_args.dynamic_multimask_stability_thresh=0.98",
]
if bbox_mask_matting_token:
hydra_overrides_extra = hydra_overrides_extra.copy()
hydra_overrides_extra += [
"++model.mask_decoder_matting_token=true",
"++model.image_encoder.trunk._target_=sam2.modeling.backbones.hieradet.HieraBBoxMask",
"++model.matting_logits_res_add=true" if matting_logits_res_add else "++model.matting_logits_res_add=false",
"++model.upscaled_embedding_res_add=true" if upscaled_embedding_res_add else "++model.upscaled_embedding_res_add=false",
]
# Read config and init model
cfg = compose(config_name=config_file, overrides=hydra_overrides_extra)
OmegaConf.resolve(cfg)
model = instantiate(cfg.model, _recursive_=True)
_load_checkpoint(model, ckpt_path, add_new_layer_weights=True)
model = model.to(device)
if mode == "eval":
model.eval()
if bbox_mask_matting_token:
for n, p in model.named_parameters():
if 'matting' in n or 'bbox_mask' in n:
p.requires_grad = True
else:
p.requires_grad = False
return model
def build_sam2_video_predictor(
config_file,
ckpt_path=None,
device="cuda",
mode="eval",
hydra_overrides_extra=[],
apply_postprocessing=True,
):
hydra_overrides = [
"++model._target_=sam2.sam2_video_predictor.SAM2VideoPredictor",
]
if apply_postprocessing:
hydra_overrides_extra = hydra_overrides_extra.copy()
hydra_overrides_extra += [
# dynamically fall back to multi-mask if the single mask is not stable
"++model.sam_mask_decoder_extra_args.dynamic_multimask_via_stability=true",
"++model.sam_mask_decoder_extra_args.dynamic_multimask_stability_delta=0.05",
"++model.sam_mask_decoder_extra_args.dynamic_multimask_stability_thresh=0.98",
# the sigmoid mask logits on interacted frames with clicks in the memory encoder so that the encoded masks are exactly as what users see from clicking
"++model.binarize_mask_from_pts_for_mem_enc=true",
# fill small holes in the low-res masks up to `fill_hole_area` (before resizing them to the original video resolution)
"++model.fill_hole_area=8",
]
hydra_overrides.extend(hydra_overrides_extra)
# Read config and init model
cfg = compose(config_name=config_file, overrides=hydra_overrides)
OmegaConf.resolve(cfg)
model = instantiate(cfg.model, _recursive_=True)
_load_checkpoint(model, ckpt_path)
model = model.to(device)
if mode == "eval":
model.eval()
return model
def build_sam2_hf(model_id, **kwargs):
from huggingface_hub import hf_hub_download
model_id_to_filenames = {
"facebook/sam2-hiera-tiny": ("sam2_hiera_t.yaml", "sam2_hiera_tiny.pt"),
"facebook/sam2-hiera-small": ("sam2_hiera_s.yaml", "sam2_hiera_small.pt"),
"facebook/sam2-hiera-base-plus": (
"sam2_hiera_b+.yaml",
"sam2_hiera_base_plus.pt",
),
"facebook/sam2-hiera-large": ("sam2_hiera_l.yaml", "sam2_hiera_large.pt"),
}
config_name, checkpoint_name = model_id_to_filenames[model_id]
ckpt_path = hf_hub_download(repo_id=model_id, filename=checkpoint_name)
return build_sam2(config_file=config_name, ckpt_path=ckpt_path, **kwargs)
def build_sam2_video_predictor_hf(model_id, **kwargs):
from huggingface_hub import hf_hub_download
model_id_to_filenames = {
"facebook/sam2-hiera-tiny": ("sam2_hiera_t.yaml", "sam2_hiera_tiny.pt"),
"facebook/sam2-hiera-small": ("sam2_hiera_s.yaml", "sam2_hiera_small.pt"),
"facebook/sam2-hiera-base-plus": (
"sam2_hiera_b+.yaml",
"sam2_hiera_base_plus.pt",
),
"facebook/sam2-hiera-large": ("sam2_hiera_l.yaml", "sam2_hiera_large.pt"),
}
config_name, checkpoint_name = model_id_to_filenames[model_id]
ckpt_path = hf_hub_download(repo_id=model_id, filename=checkpoint_name)
return build_sam2_video_predictor(
config_file=config_name, ckpt_path=ckpt_path, **kwargs
)
def _load_checkpoint(model, ckpt_path, add_new_layer_weights=False):
# if add_new_layer_weights:
# assert ckpt_path is not None
if ckpt_path is not None:
sd = torch.load(ckpt_path, map_location="cpu")["model"]
if add_new_layer_weights:
# bbox patch embed
sd['image_encoder.trunk.bbox_mask_patch_embed.proj.weight'] = torch.concat((
sd['image_encoder.trunk.patch_embed.proj.weight'],
torch.mean(sd['image_encoder.trunk.patch_embed.proj.weight'], dim=1, keepdim=True)
), dim=1)
sd['image_encoder.trunk.bbox_mask_patch_embed.proj.bias'] = sd['image_encoder.trunk.patch_embed.proj.bias']
# matting token
sd['sam_mask_decoder.matting_mask_tokens.weight'] = torch.mean(sd['sam_mask_decoder.mask_tokens.weight'], dim=0, keepdim=True).repeat(model.sam_mask_decoder.matting_token_num, 1)
output_hypernetworks_mlps_0_keys = [key for key in sd.keys() if 'output_hypernetworks_mlps.0' in key]
for i in range(model.sam_mask_decoder.matting_token_num):
for key in output_hypernetworks_mlps_0_keys:
target_key = key.replace('output_hypernetworks_mlps.0', 'matting_output_hypernetworks_mlps.{}'.format(i))
sd[target_key] = sd[key]
output_upscaling_keys = [key for key in sd.keys() if 'output_upscaling' in key]
for key in output_upscaling_keys:
target_key = key.replace('output_upscaling', 'matting_output_upscaling')
sd[target_key] = sd[key]
missing_keys, unexpected_keys = model.load_state_dict(sd)
if missing_keys:
logging.error(missing_keys)
raise RuntimeError()
if unexpected_keys:
logging.error(unexpected_keys)
raise RuntimeError()
logging.info("Loaded checkpoint sucessfully")