SEMat / data /refmatte_dataset.py
XiaRho's picture
Init
8b4c6c7 verified
raw
history blame
17.7 kB
import os
import torch
import numpy as np
import cv2
from torch.utils.data import Dataset
from torchvision import transforms
import random
import imgaug.augmenters as iaa
import numbers
import math
def random_interp():
return np.random.choice([cv2.INTER_NEAREST, cv2.INTER_LINEAR, cv2.INTER_CUBIC, cv2.INTER_LANCZOS4])
class RandomAffine(object):
"""
Random affine translation
"""
def __init__(self, degrees, translate=None, scale=None, shear=None, flip=None, resample=False, fillcolor=0):
if isinstance(degrees, numbers.Number):
if degrees < 0:
raise ValueError("If degrees is a single number, it must be positive.")
self.degrees = (-degrees, degrees)
else:
assert isinstance(degrees, (tuple, list)) and len(degrees) == 2, \
"degrees should be a list or tuple and it must be of length 2."
self.degrees = degrees
if translate is not None:
assert isinstance(translate, (tuple, list)) and len(translate) == 2, \
"translate should be a list or tuple and it must be of length 2."
for t in translate:
if not (0.0 <= t <= 1.0):
raise ValueError("translation values should be between 0 and 1")
self.translate = translate
if scale is not None:
assert isinstance(scale, (tuple, list)) and len(scale) == 2, \
"scale should be a list or tuple and it must be of length 2."
for s in scale:
if s <= 0:
raise ValueError("scale values should be positive")
self.scale = scale
if shear is not None:
if isinstance(shear, numbers.Number):
if shear < 0:
raise ValueError("If shear is a single number, it must be positive.")
self.shear = (-shear, shear)
else:
assert isinstance(shear, (tuple, list)) and len(shear) == 2, \
"shear should be a list or tuple and it must be of length 2."
self.shear = shear
else:
self.shear = shear
self.resample = resample
self.fillcolor = fillcolor
self.flip = flip
@staticmethod
def get_params(degrees, translate, scale_ranges, shears, flip, img_size):
"""Get parameters for affine transformation
Returns:
sequence: params to be passed to the affine transformation
"""
angle = random.uniform(degrees[0], degrees[1])
if translate is not None:
max_dx = translate[0] * img_size[0]
max_dy = translate[1] * img_size[1]
translations = (np.round(random.uniform(-max_dx, max_dx)),
np.round(random.uniform(-max_dy, max_dy)))
else:
translations = (0, 0)
if scale_ranges is not None:
scale = (random.uniform(scale_ranges[0], scale_ranges[1]),
random.uniform(scale_ranges[0], scale_ranges[1]))
else:
scale = (1.0, 1.0)
if shears is not None:
shear = random.uniform(shears[0], shears[1])
else:
shear = 0.0
if flip is not None:
flip = (np.random.rand(2) < flip).astype(np.int32) * 2 - 1
return angle, translations, scale, shear, flip
def __call__(self, sample):
fg, alpha = sample['fg'], sample['alpha']
rows, cols, ch = fg.shape
if np.maximum(rows, cols) < 1024:
params = self.get_params((0, 0), self.translate, self.scale, self.shear, self.flip, fg.size)
else:
params = self.get_params(self.degrees, self.translate, self.scale, self.shear, self.flip, fg.size)
center = (cols * 0.5 + 0.5, rows * 0.5 + 0.5)
M = self._get_inverse_affine_matrix(center, *params)
M = np.array(M).reshape((2, 3))
fg = cv2.warpAffine(fg, M, (cols, rows), flags=random_interp() + cv2.WARP_INVERSE_MAP)
alpha = cv2.warpAffine(alpha, M, (cols, rows), flags=random_interp() + cv2.WARP_INVERSE_MAP)
sample['fg'], sample['alpha'] = fg, alpha
return sample
@ staticmethod
def _get_inverse_affine_matrix(center, angle, translate, scale, shear, flip):
# Helper method to compute inverse matrix for affine transformation
# As it is explained in PIL.Image.rotate
# We need compute INVERSE of affine transformation matrix: M = T * C * RSS * C^-1
# where T is translation matrix: [1, 0, tx | 0, 1, ty | 0, 0, 1]
# C is translation matrix to keep center: [1, 0, cx | 0, 1, cy | 0, 0, 1]
# RSS is rotation with scale and shear matrix
# It is different from the original function in torchvision
# The order are changed to flip -> scale -> rotation -> shear
# x and y have different scale factors
# RSS(shear, a, scale, f) = [ cos(a + shear)*scale_x*f -sin(a + shear)*scale_y 0]
# [ sin(a)*scale_x*f cos(a)*scale_y 0]
# [ 0 0 1]
# Thus, the inverse is M^-1 = C * RSS^-1 * C^-1 * T^-1
angle = math.radians(angle)
shear = math.radians(shear)
scale_x = 1.0 / scale[0] * flip[0]
scale_y = 1.0 / scale[1] * flip[1]
# Inverted rotation matrix with scale and shear
d = math.cos(angle + shear) * math.cos(angle) + math.sin(angle + shear) * math.sin(angle)
matrix = [
math.cos(angle) * scale_x, math.sin(angle + shear) * scale_x, 0,
-math.sin(angle) * scale_y, math.cos(angle + shear) * scale_y, 0
]
matrix = [m / d for m in matrix]
# Apply inverse of translation and of center translation: RSS^-1 * C^-1 * T^-1
matrix[2] += matrix[0] * (-center[0] - translate[0]) + matrix[1] * (-center[1] - translate[1])
matrix[5] += matrix[3] * (-center[0] - translate[0]) + matrix[4] * (-center[1] - translate[1])
# Apply center translation: C * RSS^-1 * C^-1 * T^-1
matrix[2] += center[0]
matrix[5] += center[1]
return matrix
class GenTrimap(object):
def __init__(self):
self.erosion_kernels = [None] + [cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (size, size)) for size in range(1,100)]
def __call__(self, sample):
alpha = sample['alpha']
h, w = alpha.shape
max_kernel_size = max(30, int((min(h,w) / 2048) * 30))
### generate trimap
fg_mask = (alpha + 1e-5).astype(np.int32).astype(np.uint8)
bg_mask = (1 - alpha + 1e-5).astype(np.int32).astype(np.uint8)
fg_mask = cv2.erode(fg_mask, self.erosion_kernels[np.random.randint(1, max_kernel_size)])
bg_mask = cv2.erode(bg_mask, self.erosion_kernels[np.random.randint(1, max_kernel_size)])
trimap = np.ones_like(alpha) * 128
trimap[fg_mask == 1] = 255
trimap[bg_mask == 1] = 0
trimap = cv2.resize(trimap, (w,h), interpolation=cv2.INTER_NEAREST)
sample['trimap'] = trimap
return sample
class RandomCrop(object):
"""
Crop randomly the image in a sample, retain the center 1/4 images, and resize to 'output_size'
:param output_size (tuple or int): Desired output size. If int, square crop
is made.
"""
def __init__(self, output_size=(1024, 1024)):
assert isinstance(output_size, (int, tuple))
if isinstance(output_size, int):
self.output_size = (output_size, output_size)
else:
assert len(output_size) == 2
self.output_size = output_size
self.margin = output_size[0] // 2
def __call__(self, sample):
fg, alpha, trimap, name = sample['fg'], sample['alpha'], sample['trimap'], sample['image_name']
bg = sample['bg']
h, w = trimap.shape
bg = cv2.resize(bg, (w, h), interpolation=random_interp())
if w < self.output_size[0]+1 or h < self.output_size[1]+1:
ratio = 1.1*self.output_size[0]/h if h < w else 1.1*self.output_size[1]/w
# self.logger.warning("Size of {} is {}.".format(name, (h, w)))
while h < self.output_size[0]+1 or w < self.output_size[1]+1:
fg = cv2.resize(fg, (int(w*ratio), int(h*ratio)), interpolation=random_interp())
alpha = cv2.resize(alpha, (int(w*ratio), int(h*ratio)),
interpolation=random_interp())
trimap = cv2.resize(trimap, (int(w*ratio), int(h*ratio)), interpolation=cv2.INTER_NEAREST)
bg = cv2.resize(bg, (int(w*ratio), int(h*ratio)), interpolation=random_interp())
h, w = trimap.shape
small_trimap = cv2.resize(trimap, (w//4, h//4), interpolation=cv2.INTER_NEAREST)
unknown_list = list(zip(*np.where(small_trimap[self.margin//4:(h-self.margin)//4,
self.margin//4:(w-self.margin)//4] == 128)))
unknown_num = len(unknown_list)
if len(unknown_list) < 10:
left_top = (np.random.randint(0, h-self.output_size[0]+1), np.random.randint(0, w-self.output_size[1]+1))
else:
idx = np.random.randint(unknown_num)
left_top = (unknown_list[idx][0]*4, unknown_list[idx][1]*4)
fg_crop = fg[left_top[0]:left_top[0]+self.output_size[0], left_top[1]:left_top[1]+self.output_size[1],:]
alpha_crop = alpha[left_top[0]:left_top[0]+self.output_size[0], left_top[1]:left_top[1]+self.output_size[1]]
bg_crop = bg[left_top[0]:left_top[0]+self.output_size[0], left_top[1]:left_top[1]+self.output_size[1],:]
trimap_crop = trimap[left_top[0]:left_top[0]+self.output_size[0], left_top[1]:left_top[1]+self.output_size[1]]
if len(np.where(trimap==128)[0]) == 0:
fg_crop = cv2.resize(fg, self.output_size[::-1], interpolation=random_interp())
alpha_crop = cv2.resize(alpha, self.output_size[::-1], interpolation=random_interp())
trimap_crop = cv2.resize(trimap, self.output_size[::-1], interpolation=cv2.INTER_NEAREST)
bg_crop = cv2.resize(bg, self.output_size[::-1], interpolation=random_interp())
sample.update({'fg': fg_crop, 'alpha': alpha_crop, 'trimap': trimap_crop, 'bg': bg_crop})
return sample
class Composite_Seg(object):
def __call__(self, sample):
fg, bg, alpha = sample['fg'], sample['bg'], sample['alpha']
fg[fg < 0 ] = 0
fg[fg > 255] = 255
image = fg
sample['image'] = image
return sample
class ToTensor(object):
"""
Convert ndarrays in sample to Tensors with normalization.
"""
def __init__(self, phase="test", real_world_aug = False):
# self.mean = torch.tensor([0.485, 0.456, 0.406]).view(3,1,1)
# self.std = torch.tensor([0.229, 0.224, 0.225]).view(3,1,1)
self.mean = torch.tensor([0.0, 0.0, 0.0]).view(3,1,1)
self.std = torch.tensor([1.0, 1.0, 1.0]).view(3,1,1)
self.phase = phase
if real_world_aug:
self.RWA = iaa.SomeOf((1, None), [
iaa.LinearContrast((0.6, 1.4)),
iaa.JpegCompression(compression=(0, 60)),
iaa.GaussianBlur(sigma=(0.0, 3.0)),
iaa.AdditiveGaussianNoise(scale=(0, 0.1*255))
], random_order=True)
else:
self.RWA = None
def get_box_from_alpha(self, alpha_final):
bi_mask = np.zeros_like(alpha_final)
bi_mask[alpha_final>0.5] = 1
#bi_mask[alpha_final<=0.5] = 0
fg_set = np.where(bi_mask != 0)
if len(fg_set[1]) == 0 or len(fg_set[0]) == 0:
x_min = random.randint(1, 511)
x_max = random.randint(1, 511) + x_min
y_min = random.randint(1, 511)
y_max = random.randint(1, 511) + y_min
else:
x_min = np.min(fg_set[1])
x_max = np.max(fg_set[1])
y_min = np.min(fg_set[0])
y_max = np.max(fg_set[0])
bbox = np.array([x_min, y_min, x_max, y_max])
#cv2.rectangle(image, (x_min, y_min), (x_max, y_max), (0,255,0), 2)
#cv2.imwrite('../outputs/test.jpg', image)
#cv2.imwrite('../outputs/test_gt.jpg', alpha_single)
return bbox
def __call__(self, sample):
# convert GBR images to RGB
image, alpha, trimap = sample['image'][:,:,::-1], sample['alpha'], sample['trimap']
alpha[alpha < 0 ] = 0
alpha[alpha > 1] = 1
bbox = self.get_box_from_alpha(alpha)
if self.phase == 'train' and self.RWA is not None and np.random.rand() < 0.5:
image[image > 255] = 255
image[image < 0] = 0
image = np.round(image).astype(np.uint8)
image = np.expand_dims(image, axis=0)
image = self.RWA(images=image)
image = image[0, ...]
# swap color axis because
# numpy image: H x W x C
# torch image: C X H X W
image = image.transpose((2, 0, 1)).astype(np.float32)
alpha = np.expand_dims(alpha.astype(np.float32), axis=0)
trimap[trimap < 85] = 0
trimap[trimap >= 170] = 2
trimap[trimap >= 85] = 1
#image = cv2.rectangle(image, (bbox[0], bbox[1]), (bbox[2], bbox[3]), (255,0,0), 3)
#cv2.imwrite(os.path.join('outputs', 'img_bbox.png'), image.astype('uint8'))
# normalize image
image /= 255.
if self.phase == "train":
# convert GBR images to RGB
fg = sample['fg'][:,:,::-1].transpose((2, 0, 1)).astype(np.float32) / 255.
sample['fg'] = torch.from_numpy(fg).sub_(self.mean).div_(self.std)
bg = sample['bg'][:,:,::-1].transpose((2, 0, 1)).astype(np.float32) / 255.
sample['bg'] = torch.from_numpy(bg).sub_(self.mean).div_(self.std)
del sample['image_name']
sample['boxes'] = torch.from_numpy(bbox).to(torch.float)[None,...]
sample['image'], sample['alpha'], sample['trimap'] = \
torch.from_numpy(image), torch.from_numpy(alpha), torch.from_numpy(trimap).to(torch.long)
sample['image'] = sample['image'].sub_(self.mean).div_(self.std)
sample['trimap'] = sample['trimap'][None,...].float()
return sample
class RefMatteData(Dataset):
def __init__(
self,
data_root_path,
num_ratio = 0.34,
):
self.data_root_path = data_root_path
self.num_ratio = num_ratio
self.rim_img = [os.path.join(data_root_path, name) for name in sorted(os.listdir(data_root_path))]
self.rim_pha = [os.path.join(data_root_path.replace('img', 'mask'), name) for name in sorted(os.listdir(data_root_path.replace('img', 'mask')))]
self.rim_num = len(self.rim_pha)
self.transform_spd = transforms.Compose([
RandomAffine(degrees=30, scale=[0.8, 1.5], shear=10, flip=0.5),
GenTrimap(),
RandomCrop((1024, 1024)),
Composite_Seg(),
ToTensor(phase="train", real_world_aug=False)
])
def __getitem__(self, idx):
if self.num_ratio is not None:
if self.num_ratio < 1.0 or idx >= self.rim_num:
idx = np.random.randint(0, self.rim_num)
alpha = cv2.imread(self.rim_pha[idx % self.rim_num], 0).astype(np.float32)/255
alpha_img_name = self.rim_pha[idx % self.rim_num].split('/')[-1]
fg_img_name = alpha_img_name[:-6] + '.jpg'
fg = cv2.imread(os.path.join(self.data_root_path, fg_img_name))
if np.random.rand() < 0.25:
fg = cv2.resize(fg, (1280, 1280), interpolation=random_interp())
alpha = cv2.resize(alpha, (1280, 1280), interpolation=random_interp())
image_name = alpha_img_name # os.path.split(self.rim_img[idx % self.rim_num])[-1]
sample = {'fg': fg, 'alpha': alpha, 'bg': fg, 'image_name': image_name}
sample = self.transform_spd(sample)
converted_sample = {
'image': sample['image'],
'trimap': sample['trimap'] / 2.0,
'alpha': sample['alpha'],
'bbox': sample['boxes'],
'dataset_name': 'RefMatte',
'multi_fg': False,
}
return converted_sample
def __len__(self):
if self.num_ratio is not None:
return int(self.rim_num * self.num_ratio) # 112506 * 0.34 = 38252 (COCONut_num-38251 + 1)
else:
return self.rim_num # 112506
if __name__ == '__main__':
dataset = RefMatteData(
data_root_path = '/data/my_path_b/public_data/data/matting/RefMatte/RefMatte/train/img',
num_ratio=0.34,
)
data = dataset[0]
'''
fg torch.Size([3, 1024, 1024]) tensor(-2.1179) tensor(2.6400)
alpha torch.Size([1, 1024, 1024]) tensor(0.) tensor(1.)
bg torch.Size([3, 1024, 1024]) tensor(-2.1179) tensor(2.6400)
trimap torch.Size([1, 1024, 1024]) 0.0 or 1.0 or 2.0
image torch.Size([3, 1024, 1024]) tensor(-2.1179) tensor(2.6400)
boxes torch.Size([1, 4]) tensor(72.) tensor(676.) 0.0~1024.0
COCONut:
image torch.Size([3, 1024, 1024]) tensor(0.0006) tensor(0.9991)
trimap torch.Size([1, 1024, 1024]) 0.0 or 0.5 or 1.0
alpha torch.Size([1, 1024, 1024]) tensor(0.) tensor(1.)
bbox torch.Size([1, 4]) tensor(0.) tensor(590.)
dataset_name: 'COCONut'
'''
for key, val in data.items():
if isinstance(val, torch.Tensor):
print(key, val.shape, torch.min(val), torch.max(val))
else:
print(key, val.shape)