Spaces:
Runtime error
Runtime error
import torch | |
import re | |
import gradio as gr | |
from transformers import AutoTokenizer, ViTFeatureExtractor, VisionEncoderDecoderModel | |
import cohere | |
key_srkian = os.environ["key_srkian"] | |
co = cohere.Client(key_srkian)#srkian | |
device='cpu' | |
encoder_checkpoint = "nlpconnect/vit-gpt2-image-captioning" | |
decoder_checkpoint = "nlpconnect/vit-gpt2-image-captioning" | |
model_checkpoint = "nlpconnect/vit-gpt2-image-captioning" | |
feature_extractor = ViTFeatureExtractor.from_pretrained(encoder_checkpoint) | |
tokenizer = AutoTokenizer.from_pretrained(decoder_checkpoint) | |
model = VisionEncoderDecoderModel.from_pretrained(model_checkpoint).to(device) | |
def predict(department,image,max_length=64, num_beams=4): | |
image = image.convert('RGB') | |
image = feature_extractor(image, return_tensors="pt").pixel_values.to(device) | |
clean_text = lambda x: x.replace('<|endoftext|>','').split('\n')[0] | |
caption_ids = model.generate(image, max_length = max_length)[0] | |
caption_text = clean_text(tokenizer.decode(caption_ids)) | |
dept=department | |
context= caption_text | |
response = co.generate( | |
model='large', | |
prompt=f'create non offensive one line meme for given department and context\n\ndepartment- data science\ncontext-a man sitting on a bench with a laptop\nmeme- \"I\'m not a data scientist, but I play one on my laptop.\"\n\ndepartment-startup\ncontext-a young boy is smiling while using a laptop\nmeme-\"When your startup gets funded and you can finally afford a new laptop\"\n\ndepartment- {dept}\ncontext-{context}\nmeme-', | |
max_tokens=20, | |
temperature=0.8, | |
k=0, | |
p=0.75, | |
frequency_penalty=0, | |
presence_penalty=0, | |
stop_sequences=["department"], | |
return_likelihoods='NONE') | |
reponse=response.generations[0].text | |
reponse = reponse.replace("department", "") | |
Feedback_SQL="DEPT"+dept+"CAPT"+caption_text+"MAMAY"+reponse | |
return reponse | |
# input = gr.inputs.Image(label="Upload your Image", type = 'pil', optional=True) | |
output = gr.outputs.Textbox(type="auto",label="Meme") | |
#examples = [f"example{i}.jpg" for i in range(1,7)] | |
#examples = os.listdir() | |
description= "meme generation using advanced NLP " | |
title = "Meme world 🖼️" | |
dropdown=["data science ", "product management","marketing","startup" ,"agile","crypto" , "SEO" ] | |
article = "Created By : Xaheen " | |
interface = gr.Interface( | |
fn=predict, | |
inputs = [gr.inputs.Dropdown(dropdown),gr.inputs.Image(label="Upload your Image", type = 'pil', optional=True)], | |
theme="grass", | |
outputs=output, | |
# examples = examples, | |
title=title, | |
description=description, | |
article = article, | |
) | |
interface.launch(debug=True) | |
# c0here2022 |