Voice-cloning / TTS /vocoder /layers /parallel_wavegan.py
Shadhil's picture
voice-clone with single audio sample input
9b2107c
import torch
from torch.nn import functional as F
class ResidualBlock(torch.nn.Module):
"""Residual block module in WaveNet."""
def __init__(
self,
kernel_size=3,
res_channels=64,
gate_channels=128,
skip_channels=64,
aux_channels=80,
dropout=0.0,
dilation=1,
bias=True,
use_causal_conv=False,
):
super().__init__()
self.dropout = dropout
# no future time stamps available
if use_causal_conv:
padding = (kernel_size - 1) * dilation
else:
assert (kernel_size - 1) % 2 == 0, "Not support even number kernel size."
padding = (kernel_size - 1) // 2 * dilation
self.use_causal_conv = use_causal_conv
# dilation conv
self.conv = torch.nn.Conv1d(
res_channels, gate_channels, kernel_size, padding=padding, dilation=dilation, bias=bias
)
# local conditioning
if aux_channels > 0:
self.conv1x1_aux = torch.nn.Conv1d(aux_channels, gate_channels, 1, bias=False)
else:
self.conv1x1_aux = None
# conv output is split into two groups
gate_out_channels = gate_channels // 2
self.conv1x1_out = torch.nn.Conv1d(gate_out_channels, res_channels, 1, bias=bias)
self.conv1x1_skip = torch.nn.Conv1d(gate_out_channels, skip_channels, 1, bias=bias)
def forward(self, x, c):
"""
x: B x D_res x T
c: B x D_aux x T
"""
residual = x
x = F.dropout(x, p=self.dropout, training=self.training)
x = self.conv(x)
# remove future time steps if use_causal_conv conv
x = x[:, :, : residual.size(-1)] if self.use_causal_conv else x
# split into two part for gated activation
splitdim = 1
xa, xb = x.split(x.size(splitdim) // 2, dim=splitdim)
# local conditioning
if c is not None:
assert self.conv1x1_aux is not None
c = self.conv1x1_aux(c)
ca, cb = c.split(c.size(splitdim) // 2, dim=splitdim)
xa, xb = xa + ca, xb + cb
x = torch.tanh(xa) * torch.sigmoid(xb)
# for skip connection
s = self.conv1x1_skip(x)
# for residual connection
x = (self.conv1x1_out(x) + residual) * (0.5**2)
return x, s