Spaces:
Runtime error
Runtime error
from typing import Dict, Union | |
import torch | |
from torch import nn | |
from torch.nn import functional as F | |
from TTS.utils.audio.torch_transforms import TorchSTFT | |
from TTS.vocoder.utils.distribution import discretized_mix_logistic_loss, gaussian_loss | |
################################# | |
# GENERATOR LOSSES | |
################################# | |
class STFTLoss(nn.Module): | |
"""STFT loss. Input generate and real waveforms are converted | |
to spectrograms compared with L1 and Spectral convergence losses. | |
It is from ParallelWaveGAN paper https://arxiv.org/pdf/1910.11480.pdf""" | |
def __init__(self, n_fft, hop_length, win_length): | |
super().__init__() | |
self.n_fft = n_fft | |
self.hop_length = hop_length | |
self.win_length = win_length | |
self.stft = TorchSTFT(n_fft, hop_length, win_length) | |
def forward(self, y_hat, y): | |
y_hat_M = self.stft(y_hat) | |
y_M = self.stft(y) | |
# magnitude loss | |
loss_mag = F.l1_loss(torch.log(y_M), torch.log(y_hat_M)) | |
# spectral convergence loss | |
loss_sc = torch.norm(y_M - y_hat_M, p="fro") / torch.norm(y_M, p="fro") | |
return loss_mag, loss_sc | |
class MultiScaleSTFTLoss(torch.nn.Module): | |
"""Multi-scale STFT loss. Input generate and real waveforms are converted | |
to spectrograms compared with L1 and Spectral convergence losses. | |
It is from ParallelWaveGAN paper https://arxiv.org/pdf/1910.11480.pdf""" | |
def __init__(self, n_ffts=(1024, 2048, 512), hop_lengths=(120, 240, 50), win_lengths=(600, 1200, 240)): | |
super().__init__() | |
self.loss_funcs = torch.nn.ModuleList() | |
for n_fft, hop_length, win_length in zip(n_ffts, hop_lengths, win_lengths): | |
self.loss_funcs.append(STFTLoss(n_fft, hop_length, win_length)) | |
def forward(self, y_hat, y): | |
N = len(self.loss_funcs) | |
loss_sc = 0 | |
loss_mag = 0 | |
for f in self.loss_funcs: | |
lm, lsc = f(y_hat, y) | |
loss_mag += lm | |
loss_sc += lsc | |
loss_sc /= N | |
loss_mag /= N | |
return loss_mag, loss_sc | |
class L1SpecLoss(nn.Module): | |
"""L1 Loss over Spectrograms as described in HiFiGAN paper https://arxiv.org/pdf/2010.05646.pdf""" | |
def __init__( | |
self, sample_rate, n_fft, hop_length, win_length, mel_fmin=None, mel_fmax=None, n_mels=None, use_mel=True | |
): | |
super().__init__() | |
self.use_mel = use_mel | |
self.stft = TorchSTFT( | |
n_fft, | |
hop_length, | |
win_length, | |
sample_rate=sample_rate, | |
mel_fmin=mel_fmin, | |
mel_fmax=mel_fmax, | |
n_mels=n_mels, | |
use_mel=use_mel, | |
) | |
def forward(self, y_hat, y): | |
y_hat_M = self.stft(y_hat) | |
y_M = self.stft(y) | |
# magnitude loss | |
loss_mag = F.l1_loss(torch.log(y_M), torch.log(y_hat_M)) | |
return loss_mag | |
class MultiScaleSubbandSTFTLoss(MultiScaleSTFTLoss): | |
"""Multiscale STFT loss for multi band model outputs. | |
From MultiBand-MelGAN paper https://arxiv.org/abs/2005.05106""" | |
# pylint: disable=no-self-use | |
def forward(self, y_hat, y): | |
y_hat = y_hat.view(-1, 1, y_hat.shape[2]) | |
y = y.view(-1, 1, y.shape[2]) | |
return super().forward(y_hat.squeeze(1), y.squeeze(1)) | |
class MSEGLoss(nn.Module): | |
"""Mean Squared Generator Loss""" | |
# pylint: disable=no-self-use | |
def forward(self, score_real): | |
loss_fake = F.mse_loss(score_real, score_real.new_ones(score_real.shape)) | |
return loss_fake | |
class HingeGLoss(nn.Module): | |
"""Hinge Discriminator Loss""" | |
# pylint: disable=no-self-use | |
def forward(self, score_real): | |
# TODO: this might be wrong | |
loss_fake = torch.mean(F.relu(1.0 - score_real)) | |
return loss_fake | |
################################## | |
# DISCRIMINATOR LOSSES | |
################################## | |
class MSEDLoss(nn.Module): | |
"""Mean Squared Discriminator Loss""" | |
def __init__( | |
self, | |
): | |
super().__init__() | |
self.loss_func = nn.MSELoss() | |
# pylint: disable=no-self-use | |
def forward(self, score_fake, score_real): | |
loss_real = self.loss_func(score_real, score_real.new_ones(score_real.shape)) | |
loss_fake = self.loss_func(score_fake, score_fake.new_zeros(score_fake.shape)) | |
loss_d = loss_real + loss_fake | |
return loss_d, loss_real, loss_fake | |
class HingeDLoss(nn.Module): | |
"""Hinge Discriminator Loss""" | |
# pylint: disable=no-self-use | |
def forward(self, score_fake, score_real): | |
loss_real = torch.mean(F.relu(1.0 - score_real)) | |
loss_fake = torch.mean(F.relu(1.0 + score_fake)) | |
loss_d = loss_real + loss_fake | |
return loss_d, loss_real, loss_fake | |
class MelganFeatureLoss(nn.Module): | |
def __init__( | |
self, | |
): | |
super().__init__() | |
self.loss_func = nn.L1Loss() | |
# pylint: disable=no-self-use | |
def forward(self, fake_feats, real_feats): | |
loss_feats = 0 | |
num_feats = 0 | |
for idx, _ in enumerate(fake_feats): | |
for fake_feat, real_feat in zip(fake_feats[idx], real_feats[idx]): | |
loss_feats += self.loss_func(fake_feat, real_feat) | |
num_feats += 1 | |
loss_feats = loss_feats / num_feats | |
return loss_feats | |
##################################### | |
# LOSS WRAPPERS | |
##################################### | |
def _apply_G_adv_loss(scores_fake, loss_func): | |
"""Compute G adversarial loss function | |
and normalize values""" | |
adv_loss = 0 | |
if isinstance(scores_fake, list): | |
for score_fake in scores_fake: | |
fake_loss = loss_func(score_fake) | |
adv_loss += fake_loss | |
adv_loss /= len(scores_fake) | |
else: | |
fake_loss = loss_func(scores_fake) | |
adv_loss = fake_loss | |
return adv_loss | |
def _apply_D_loss(scores_fake, scores_real, loss_func): | |
"""Compute D loss func and normalize loss values""" | |
loss = 0 | |
real_loss = 0 | |
fake_loss = 0 | |
if isinstance(scores_fake, list): | |
# multi-scale loss | |
for score_fake, score_real in zip(scores_fake, scores_real): | |
total_loss, real_loss_, fake_loss_ = loss_func(score_fake=score_fake, score_real=score_real) | |
loss += total_loss | |
real_loss += real_loss_ | |
fake_loss += fake_loss_ | |
# normalize loss values with number of scales (discriminators) | |
loss /= len(scores_fake) | |
real_loss /= len(scores_real) | |
fake_loss /= len(scores_fake) | |
else: | |
# single scale loss | |
total_loss, real_loss, fake_loss = loss_func(scores_fake, scores_real) | |
loss = total_loss | |
return loss, real_loss, fake_loss | |
################################## | |
# MODEL LOSSES | |
################################## | |
class GeneratorLoss(nn.Module): | |
"""Generator Loss Wrapper. Based on model configuration it sets a right set of loss functions and computes | |
losses. It allows to experiment with different combinations of loss functions with different models by just | |
changing configurations. | |
Args: | |
C (AttrDict): model configuration. | |
""" | |
def __init__(self, C): | |
super().__init__() | |
assert not ( | |
C.use_mse_gan_loss and C.use_hinge_gan_loss | |
), " [!] Cannot use HingeGANLoss and MSEGANLoss together." | |
self.use_stft_loss = C.use_stft_loss if "use_stft_loss" in C else False | |
self.use_subband_stft_loss = C.use_subband_stft_loss if "use_subband_stft_loss" in C else False | |
self.use_mse_gan_loss = C.use_mse_gan_loss if "use_mse_gan_loss" in C else False | |
self.use_hinge_gan_loss = C.use_hinge_gan_loss if "use_hinge_gan_loss" in C else False | |
self.use_feat_match_loss = C.use_feat_match_loss if "use_feat_match_loss" in C else False | |
self.use_l1_spec_loss = C.use_l1_spec_loss if "use_l1_spec_loss" in C else False | |
self.stft_loss_weight = C.stft_loss_weight if "stft_loss_weight" in C else 0.0 | |
self.subband_stft_loss_weight = C.subband_stft_loss_weight if "subband_stft_loss_weight" in C else 0.0 | |
self.mse_gan_loss_weight = C.mse_G_loss_weight if "mse_G_loss_weight" in C else 0.0 | |
self.hinge_gan_loss_weight = C.hinge_G_loss_weight if "hinde_G_loss_weight" in C else 0.0 | |
self.feat_match_loss_weight = C.feat_match_loss_weight if "feat_match_loss_weight" in C else 0.0 | |
self.l1_spec_loss_weight = C.l1_spec_loss_weight if "l1_spec_loss_weight" in C else 0.0 | |
if C.use_stft_loss: | |
self.stft_loss = MultiScaleSTFTLoss(**C.stft_loss_params) | |
if C.use_subband_stft_loss: | |
self.subband_stft_loss = MultiScaleSubbandSTFTLoss(**C.subband_stft_loss_params) | |
if C.use_mse_gan_loss: | |
self.mse_loss = MSEGLoss() | |
if C.use_hinge_gan_loss: | |
self.hinge_loss = HingeGLoss() | |
if C.use_feat_match_loss: | |
self.feat_match_loss = MelganFeatureLoss() | |
if C.use_l1_spec_loss: | |
assert C.audio["sample_rate"] == C.l1_spec_loss_params["sample_rate"] | |
self.l1_spec_loss = L1SpecLoss(**C.l1_spec_loss_params) | |
def forward( | |
self, y_hat=None, y=None, scores_fake=None, feats_fake=None, feats_real=None, y_hat_sub=None, y_sub=None | |
): | |
gen_loss = 0 | |
adv_loss = 0 | |
return_dict = {} | |
# STFT Loss | |
if self.use_stft_loss: | |
stft_loss_mg, stft_loss_sc = self.stft_loss(y_hat[:, :, : y.size(2)].squeeze(1), y.squeeze(1)) | |
return_dict["G_stft_loss_mg"] = stft_loss_mg | |
return_dict["G_stft_loss_sc"] = stft_loss_sc | |
gen_loss = gen_loss + self.stft_loss_weight * (stft_loss_mg + stft_loss_sc) | |
# L1 Spec loss | |
if self.use_l1_spec_loss: | |
l1_spec_loss = self.l1_spec_loss(y_hat, y) | |
return_dict["G_l1_spec_loss"] = l1_spec_loss | |
gen_loss = gen_loss + self.l1_spec_loss_weight * l1_spec_loss | |
# subband STFT Loss | |
if self.use_subband_stft_loss: | |
subband_stft_loss_mg, subband_stft_loss_sc = self.subband_stft_loss(y_hat_sub, y_sub) | |
return_dict["G_subband_stft_loss_mg"] = subband_stft_loss_mg | |
return_dict["G_subband_stft_loss_sc"] = subband_stft_loss_sc | |
gen_loss = gen_loss + self.subband_stft_loss_weight * (subband_stft_loss_mg + subband_stft_loss_sc) | |
# multiscale MSE adversarial loss | |
if self.use_mse_gan_loss and scores_fake is not None: | |
mse_fake_loss = _apply_G_adv_loss(scores_fake, self.mse_loss) | |
return_dict["G_mse_fake_loss"] = mse_fake_loss | |
adv_loss = adv_loss + self.mse_gan_loss_weight * mse_fake_loss | |
# multiscale Hinge adversarial loss | |
if self.use_hinge_gan_loss and not scores_fake is not None: | |
hinge_fake_loss = _apply_G_adv_loss(scores_fake, self.hinge_loss) | |
return_dict["G_hinge_fake_loss"] = hinge_fake_loss | |
adv_loss = adv_loss + self.hinge_gan_loss_weight * hinge_fake_loss | |
# Feature Matching Loss | |
if self.use_feat_match_loss and not feats_fake is None: | |
feat_match_loss = self.feat_match_loss(feats_fake, feats_real) | |
return_dict["G_feat_match_loss"] = feat_match_loss | |
adv_loss = adv_loss + self.feat_match_loss_weight * feat_match_loss | |
return_dict["loss"] = gen_loss + adv_loss | |
return_dict["G_gen_loss"] = gen_loss | |
return_dict["G_adv_loss"] = adv_loss | |
return return_dict | |
class DiscriminatorLoss(nn.Module): | |
"""Like ```GeneratorLoss```""" | |
def __init__(self, C): | |
super().__init__() | |
assert not ( | |
C.use_mse_gan_loss and C.use_hinge_gan_loss | |
), " [!] Cannot use HingeGANLoss and MSEGANLoss together." | |
self.use_mse_gan_loss = C.use_mse_gan_loss | |
self.use_hinge_gan_loss = C.use_hinge_gan_loss | |
if C.use_mse_gan_loss: | |
self.mse_loss = MSEDLoss() | |
if C.use_hinge_gan_loss: | |
self.hinge_loss = HingeDLoss() | |
def forward(self, scores_fake, scores_real): | |
loss = 0 | |
return_dict = {} | |
if self.use_mse_gan_loss: | |
mse_D_loss, mse_D_real_loss, mse_D_fake_loss = _apply_D_loss( | |
scores_fake=scores_fake, scores_real=scores_real, loss_func=self.mse_loss | |
) | |
return_dict["D_mse_gan_loss"] = mse_D_loss | |
return_dict["D_mse_gan_real_loss"] = mse_D_real_loss | |
return_dict["D_mse_gan_fake_loss"] = mse_D_fake_loss | |
loss += mse_D_loss | |
if self.use_hinge_gan_loss: | |
hinge_D_loss, hinge_D_real_loss, hinge_D_fake_loss = _apply_D_loss( | |
scores_fake=scores_fake, scores_real=scores_real, loss_func=self.hinge_loss | |
) | |
return_dict["D_hinge_gan_loss"] = hinge_D_loss | |
return_dict["D_hinge_gan_real_loss"] = hinge_D_real_loss | |
return_dict["D_hinge_gan_fake_loss"] = hinge_D_fake_loss | |
loss += hinge_D_loss | |
return_dict["loss"] = loss | |
return return_dict | |
class WaveRNNLoss(nn.Module): | |
def __init__(self, wave_rnn_mode: Union[str, int]): | |
super().__init__() | |
if wave_rnn_mode == "mold": | |
self.loss_func = discretized_mix_logistic_loss | |
elif wave_rnn_mode == "gauss": | |
self.loss_func = gaussian_loss | |
elif isinstance(wave_rnn_mode, int): | |
self.loss_func = torch.nn.CrossEntropyLoss() | |
else: | |
raise ValueError(" [!] Unknown mode for Wavernn.") | |
def forward(self, y_hat, y) -> Dict: | |
loss = self.loss_func(y_hat, y) | |
return {"loss": loss} | |