Spaces:
Paused
Paused
| import spaces | |
| import os | |
| import json | |
| import time | |
| import torch #a | |
| from PIL import Image | |
| from tqdm import tqdm | |
| import gradio as gr | |
| import uuid | |
| from datetime import datetime | |
| from typing import List, Dict, Optional | |
| from safetensors.torch import save_file | |
| from src.pipeline import FluxPipeline | |
| from src.transformer_flux import FluxTransformer2DModel | |
| from src.lora_helper import set_single_lora, set_multi_lora, unset_lora | |
| # Initialize the image processor | |
| base_path = "black-forest-labs/FLUX.1-dev" | |
| lora_base_path = "./models" | |
| pipe = FluxPipeline.from_pretrained(base_path, torch_dtype=torch.bfloat16) | |
| transformer = FluxTransformer2DModel.from_pretrained(base_path, subfolder="transformer", torch_dtype=torch.bfloat16) | |
| pipe.transformer = transformer | |
| # Gallery storage | |
| GALLERY_DIR = "gallery" | |
| os.makedirs(GALLERY_DIR, exist_ok=True) | |
| GALLERY_DB = os.path.join(GALLERY_DIR, "gallery_db.json") | |
| # Initialize gallery database | |
| if not os.path.exists(GALLERY_DB): | |
| with open(GALLERY_DB, "w") as f: | |
| json.dump({"images": []}, f) | |
| def clear_cache(transformer): | |
| for name, attn_processor in transformer.attn_processors.items(): | |
| attn_processor.bank_kv.clear() | |
| def add_to_gallery(image: Image.Image, prompt: str, control_type: str) -> str: | |
| """Save image to gallery and return its path""" | |
| image_id = str(uuid.uuid4()) | |
| filename = f"{image_id}.png" | |
| filepath = os.path.join(GALLERY_DIR, filename) | |
| image.save(filepath) | |
| # Update gallery database | |
| with open(GALLERY_DB, "r") as f: | |
| db = json.load(f) | |
| db["images"].append({ | |
| "id": image_id, | |
| "filename": filename, | |
| "prompt": prompt, | |
| "control_type": control_type, | |
| "created_at": datetime.now().isoformat() | |
| }) | |
| with open(GALLERY_DB, "w") as f: | |
| json.dump(db, f, indent=2) | |
| return filepath | |
| def get_gallery_images() -> List[Dict]: | |
| """Get all gallery images from database""" | |
| try: | |
| with open(GALLERY_DB, "r") as f: | |
| db = json.load(f) | |
| return db["images"] | |
| except: | |
| return [] | |
| def single_condition_generate_image(prompt, spatial_img, height, width, seed, control_type, progress=gr.Progress()): | |
| # Set the control type | |
| if control_type == "Ghibli": | |
| lora_path = os.path.join(lora_base_path, "Ghibli.safetensors") | |
| set_single_lora(pipe.transformer, lora_path, lora_weights=[1], cond_size=512, device="cpu") | |
| # Process the image | |
| spatial_imgs = [spatial_img] if spatial_img else [] | |
| progress(0, desc="Starting generation...") | |
| image = pipe( | |
| prompt, | |
| height=int(height), | |
| width=int(width), | |
| guidance_scale=3.5, | |
| num_inference_steps=15, | |
| max_sequence_length=512, | |
| generator=torch.Generator("cpu").manual_seed(seed), | |
| subject_images=[], | |
| spatial_images=spatial_imgs, | |
| cond_size=512, | |
| ).images[0] | |
| # Save to gallery | |
| image_path = add_to_gallery(image, prompt, control_type) | |
| clear_cache(pipe.transformer) | |
| return image | |
| # Define the Gradio interface components | |
| control_types = ["Ghibli"] | |
| # Example data | |
| single_examples = [ | |
| ["Ghibli Studio style, Charming hand-drawn anime-style illustration", Image.open("./test_imgs/00.png"), 512, 512, 5, "Ghibli"], | |
| ["Ghibli Studio style, Charming hand-drawn anime-style illustration", Image.open("./test_imgs/02.png"), 512, 512, 42, "Ghibli"], | |
| ["Ghibli Studio style, Charming hand-drawn anime-style illustration", Image.open("./test_imgs/03.png"), 512, 512, 1, "Ghibli"], | |
| ["Ghibli Studio style, Charming hand-drawn anime-style illustration", Image.open("./test_imgs/04.png"), 512, 512, 1, "Ghibli"], | |
| ["Ghibli Studio style, Charming hand-drawn anime-style illustration", Image.open("./test_imgs/06.png"), 512, 512, 1, "Ghibli"], | |
| ["Ghibli Studio style, Charming hand-drawn anime-style illustration", Image.open("./test_imgs/07.png"), 512, 512, 1, "Ghibli"], | |
| ["Ghibli Studio style, Charming hand-drawn anime-style illustration", Image.open("./test_imgs/08.png"), 512, 512, 1, "Ghibli"], | |
| ["Ghibli Studio style, Charming hand-drawn anime-style illustration", Image.open("./test_imgs/09.png"), 512, 512, 1, "Ghibli"], | |
| ] | |
| # Create the Gradio Blocks interface | |
| with gr.Blocks() as demo: | |
| gr.Markdown("# Ghibli Studio Control Image Generation with EasyControl") | |
| gr.Markdown("The model is trained on **only 100 real Asian faces** paired with **GPT-4o-generated Ghibli-style counterparts**, and it preserves facial features while applying the iconic anime aesthetic.") | |
| gr.Markdown("Generate images using EasyControl with Ghibli control LoRAs.(Running on CPU due to free tier limitations; expect slower performance and lower resolution.)") | |
| gr.Markdown("**[Attention!!]**:The recommended prompts for using Ghibli Control LoRA should include the trigger words: `Ghibli Studio style, Charming hand-drawn anime-style illustration`") | |
| gr.Markdown("😊😊If you like this demo, please give us a star (github: [EasyControl](https://github.com/Xiaojiu-z/EasyControl))") | |
| with gr.Tab("Ghibli Condition Generation"): | |
| with gr.Row(): | |
| with gr.Column(): | |
| prompt = gr.Textbox(label="Prompt", value="Ghibli Studio style, Charming hand-drawn anime-style illustration") | |
| spatial_img = gr.Image(label="Ghibli Image", type="pil") | |
| height = gr.Slider(minimum=256, maximum=512, step=64, label="Height", value=512) | |
| width = gr.Slider(minimum=256, maximum=512, step=64, label="Width", value=512) | |
| seed = gr.Number(label="Seed", value=42) | |
| control_type = gr.Dropdown(choices=control_types, label="Control Type") | |
| single_generate_btn = gr.Button("Generate Image") | |
| with gr.Column(): | |
| single_output_image = gr.Image(label="Generated Image") | |
| gr.Examples( | |
| examples=single_examples, | |
| inputs=[prompt, spatial_img, height, width, seed, control_type], | |
| outputs=single_output_image, | |
| fn=single_condition_generate_image, | |
| cache_examples=False, | |
| label="Single Condition Examples" | |
| ) | |
| with gr.Tab("Gallery"): | |
| gallery = gr.Gallery( | |
| label="Generated Images", | |
| show_label=True, | |
| elem_id="gallery" | |
| ) | |
| refresh_btn = gr.Button("Refresh Gallery") | |
| def load_gallery(): | |
| images = get_gallery_images() | |
| return [os.path.join(GALLERY_DIR, img["filename"]) for img in images] | |
| refresh_btn.click( | |
| fn=load_gallery, | |
| outputs=gallery | |
| ) | |
| # Load gallery on page load | |
| demo.load( | |
| fn=load_gallery, | |
| outputs=gallery | |
| ) | |
| single_generate_btn.click( | |
| single_condition_generate_image, | |
| inputs=[prompt, spatial_img, height, width, seed, control_type], | |
| outputs=single_output_image, | |
| concurrency_limit=1 # Process one at a time | |
| ) | |
| # Launch the Gradio app | |
| demo.queue().launch() |