Spaces:
Sleeping
Sleeping
✨ [Add] json can be directly read by dataloader.py
Browse filesThe default data type will be json file in this commit, and this will be further modified in later commits.
- utils/dataloader.py +103 -30
utils/dataloader.py
CHANGED
|
@@ -1,3 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
| 1 |
from os import listdir, path
|
| 2 |
from typing import List, Tuple, Union
|
| 3 |
|
|
@@ -5,14 +8,59 @@ import diskcache as dc
|
|
| 5 |
import hydra
|
| 6 |
import numpy as np
|
| 7 |
import torch
|
|
|
|
|
|
|
| 8 |
from loguru import logger
|
| 9 |
from PIL import Image
|
| 10 |
from torch.utils.data import DataLoader, Dataset
|
| 11 |
from torchvision.transforms import functional as TF
|
| 12 |
from tqdm.rich import tqdm
|
| 13 |
|
| 14 |
-
|
| 15 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 16 |
|
| 17 |
|
| 18 |
class YoloDataset(Dataset):
|
|
@@ -44,9 +92,7 @@ class YoloDataset(Dataset):
|
|
| 44 |
|
| 45 |
if data is None:
|
| 46 |
logger.info("Generating {} cache", phase_name)
|
| 47 |
-
|
| 48 |
-
labels_path = path.join(dataset_path, "label", phase_name)
|
| 49 |
-
data = self.filter_data(images_path, labels_path)
|
| 50 |
cache[phase_name] = data
|
| 51 |
|
| 52 |
cache.close()
|
|
@@ -54,7 +100,7 @@ class YoloDataset(Dataset):
|
|
| 54 |
data = cache[phase_name]
|
| 55 |
return data
|
| 56 |
|
| 57 |
-
def filter_data(self,
|
| 58 |
"""
|
| 59 |
Filters and collects dataset information by pairing images with their corresponding labels.
|
| 60 |
|
|
@@ -63,29 +109,58 @@ class YoloDataset(Dataset):
|
|
| 63 |
labels_path (str): Path to the directory containing label files.
|
| 64 |
|
| 65 |
Returns:
|
| 66 |
-
list: A list of tuples, each containing the path to an image file and its associated
|
| 67 |
"""
|
|
|
|
|
|
|
|
|
|
| 68 |
data = []
|
| 69 |
valid_inputs = 0
|
| 70 |
-
images_list = sorted(listdir(images_path))
|
| 71 |
-
for image_name in tqdm(images_list, desc="Filtering data"):
|
| 72 |
-
if not image_name.lower().endswith((".jpg", ".jpeg", ".png")):
|
| 73 |
-
continue
|
| 74 |
-
|
| 75 |
-
img_path = path.join(images_path, image_name)
|
| 76 |
-
base_name, _ = path.splitext(image_name)
|
| 77 |
-
label_path = path.join(labels_path, f"{base_name}.txt")
|
| 78 |
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 84 |
|
| 85 |
logger.info("Recorded {}/{} valid inputs", valid_inputs, len(images_list))
|
| 86 |
return data
|
| 87 |
|
| 88 |
-
def load_valid_labels(self, label_path
|
| 89 |
"""
|
| 90 |
Loads and validates bounding box data is [0, 1] from a label file.
|
| 91 |
|
|
@@ -96,15 +171,13 @@ class YoloDataset(Dataset):
|
|
| 96 |
torch.Tensor or None: A tensor of all valid bounding boxes if any are found; otherwise, None.
|
| 97 |
"""
|
| 98 |
bboxes = []
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
bbox = torch.tensor([cls, *valid_points.min(axis=0), *valid_points.max(axis=0)])
|
| 107 |
-
bboxes.append(bbox)
|
| 108 |
|
| 109 |
if bboxes:
|
| 110 |
return torch.stack(bboxes)
|
|
|
|
| 1 |
+
import json
|
| 2 |
+
import os
|
| 3 |
+
from itertools import chain
|
| 4 |
from os import listdir, path
|
| 5 |
from typing import List, Tuple, Union
|
| 6 |
|
|
|
|
| 8 |
import hydra
|
| 9 |
import numpy as np
|
| 10 |
import torch
|
| 11 |
+
from data_augment import Compose, HorizontalFlip, MixUp, Mosaic, VerticalFlip
|
| 12 |
+
from drawer import draw_bboxes
|
| 13 |
from loguru import logger
|
| 14 |
from PIL import Image
|
| 15 |
from torch.utils.data import DataLoader, Dataset
|
| 16 |
from torchvision.transforms import functional as TF
|
| 17 |
from tqdm.rich import tqdm
|
| 18 |
|
| 19 |
+
|
| 20 |
+
def find_labels_path(dataset_path, phase_name):
|
| 21 |
+
json_labels_path = path.join(dataset_path, "annotations", f"instances_{phase_name}.json")
|
| 22 |
+
|
| 23 |
+
txt_labels_path = path.join(dataset_path, "label", phase_name)
|
| 24 |
+
|
| 25 |
+
if path.isfile(json_labels_path):
|
| 26 |
+
return json_labels_path, "json"
|
| 27 |
+
|
| 28 |
+
elif path.isdir(txt_labels_path):
|
| 29 |
+
txt_files = [f for f in os.listdir(txt_labels_path) if f.endswith(".txt")]
|
| 30 |
+
if txt_files:
|
| 31 |
+
return txt_labels_path, "txt"
|
| 32 |
+
|
| 33 |
+
raise FileNotFoundError("No labels found in the specified dataset path and phase name.")
|
| 34 |
+
|
| 35 |
+
|
| 36 |
+
def load_json_labels(json_labels_path):
|
| 37 |
+
with open(json_labels_path, "r") as file:
|
| 38 |
+
data = json.load(file)
|
| 39 |
+
return data
|
| 40 |
+
|
| 41 |
+
|
| 42 |
+
def create_annotation_lookup(data):
|
| 43 |
+
annotation_lookup = {}
|
| 44 |
+
for anno in data["annotations"]:
|
| 45 |
+
if anno["iscrowd"] == 0: # Exclude crowd annotations
|
| 46 |
+
image_id = anno["image_id"]
|
| 47 |
+
if image_id not in annotation_lookup:
|
| 48 |
+
annotation_lookup[image_id] = []
|
| 49 |
+
annotation_lookup[image_id].append(anno)
|
| 50 |
+
return annotation_lookup
|
| 51 |
+
|
| 52 |
+
|
| 53 |
+
def process_annotations(annotations, image_id, image_dimensions):
|
| 54 |
+
ret_array = []
|
| 55 |
+
h, w = image_dimensions["height"], image_dimensions["width"]
|
| 56 |
+
for anno in annotations:
|
| 57 |
+
category_id = anno["category_id"]
|
| 58 |
+
flat_list = [item for sublist in anno["segmentation"] for item in sublist]
|
| 59 |
+
normalized_data = (np.array(flat_list).reshape(-1, 2) / [w, h]).tolist()
|
| 60 |
+
normalized_flat = list(chain(*normalized_data))
|
| 61 |
+
normalized_flat.insert(0, category_id)
|
| 62 |
+
ret_array.append(normalized_flat)
|
| 63 |
+
return ret_array
|
| 64 |
|
| 65 |
|
| 66 |
class YoloDataset(Dataset):
|
|
|
|
| 92 |
|
| 93 |
if data is None:
|
| 94 |
logger.info("Generating {} cache", phase_name)
|
| 95 |
+
data = self.filter_data(dataset_path, phase_name)
|
|
|
|
|
|
|
| 96 |
cache[phase_name] = data
|
| 97 |
|
| 98 |
cache.close()
|
|
|
|
| 100 |
data = cache[phase_name]
|
| 101 |
return data
|
| 102 |
|
| 103 |
+
def filter_data(self, dataset_path: str, phase_name: str) -> list:
|
| 104 |
"""
|
| 105 |
Filters and collects dataset information by pairing images with their corresponding labels.
|
| 106 |
|
|
|
|
| 109 |
labels_path (str): Path to the directory containing label files.
|
| 110 |
|
| 111 |
Returns:
|
| 112 |
+
list: A list of tuples, each containing the path to an image file and its associated segmentation as a tensor.
|
| 113 |
"""
|
| 114 |
+
images_path = path.join(dataset_path, "images", phase_name)
|
| 115 |
+
labels_path, data_type = find_labels_path(dataset_path, phase_name)
|
| 116 |
+
images_list = sorted(os.listdir(images_path))
|
| 117 |
data = []
|
| 118 |
valid_inputs = 0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 119 |
|
| 120 |
+
if data_type == "json":
|
| 121 |
+
labels_data = load_json_labels(labels_path)
|
| 122 |
+
annotations_lookup = create_annotation_lookup(labels_data)
|
| 123 |
+
image_info_dict = {path.splitext(img["file_name"])[0]: img for img in labels_data["images"]}
|
| 124 |
+
|
| 125 |
+
for image_name in tqdm(images_list, desc="Filtering data"):
|
| 126 |
+
if not image_name.lower().endswith((".jpg", ".jpeg", ".png")):
|
| 127 |
+
continue
|
| 128 |
+
base_name, _ = path.splitext(image_name)
|
| 129 |
+
if base_name in image_info_dict:
|
| 130 |
+
image_info = image_info_dict[base_name]
|
| 131 |
+
annotations = annotations_lookup.get(image_info["id"], [])
|
| 132 |
+
if annotations:
|
| 133 |
+
processed_data = process_annotations(annotations, image_info["id"], image_info)
|
| 134 |
+
if processed_data:
|
| 135 |
+
img_path = path.join(images_path, image_name)
|
| 136 |
+
labels = self.load_valid_labels(img_path, processed_data)
|
| 137 |
+
if labels is not None:
|
| 138 |
+
data.append((img_path, labels))
|
| 139 |
+
valid_inputs += 1
|
| 140 |
+
|
| 141 |
+
elif data_type == "txt":
|
| 142 |
+
for image_name in tqdm(images_list, desc="Filtering data"):
|
| 143 |
+
if not image_name.lower().endswith((".jpg", ".jpeg", ".png")):
|
| 144 |
+
continue
|
| 145 |
+
img_path = path.join(images_path, image_name)
|
| 146 |
+
base_name, _ = path.splitext(image_name)
|
| 147 |
+
label_path = path.join(labels_path, f"{base_name}.txt")
|
| 148 |
+
|
| 149 |
+
if path.isfile(label_path):
|
| 150 |
+
seg_data_one_img = []
|
| 151 |
+
with open(label_path, "r") as file:
|
| 152 |
+
for line in file:
|
| 153 |
+
parts = list(map(float, line.strip().split()))
|
| 154 |
+
seg_data_one_img.append(parts)
|
| 155 |
+
labels = self.load_valid_labels(label_path, seg_data_one_img)
|
| 156 |
+
if labels is not None:
|
| 157 |
+
data.append((img_path, labels))
|
| 158 |
+
valid_inputs += 1
|
| 159 |
|
| 160 |
logger.info("Recorded {}/{} valid inputs", valid_inputs, len(images_list))
|
| 161 |
return data
|
| 162 |
|
| 163 |
+
def load_valid_labels(self, label_path, seg_data_one_img) -> Union[torch.Tensor, None]:
|
| 164 |
"""
|
| 165 |
Loads and validates bounding box data is [0, 1] from a label file.
|
| 166 |
|
|
|
|
| 171 |
torch.Tensor or None: A tensor of all valid bounding boxes if any are found; otherwise, None.
|
| 172 |
"""
|
| 173 |
bboxes = []
|
| 174 |
+
for seg_data in seg_data_one_img:
|
| 175 |
+
cls = seg_data[0]
|
| 176 |
+
points = np.array(seg_data[1:]).reshape(-1, 2)
|
| 177 |
+
valid_points = points[(points >= 0) & (points <= 1)].reshape(-1, 2)
|
| 178 |
+
if valid_points.size > 1:
|
| 179 |
+
bbox = torch.tensor([cls, *valid_points.min(axis=0), *valid_points.max(axis=0)])
|
| 180 |
+
bboxes.append(bbox)
|
|
|
|
|
|
|
| 181 |
|
| 182 |
if bboxes:
|
| 183 |
return torch.stack(bboxes)
|