Spaces:
Sleeping
Sleeping
✨ [New] YOLOv7 structure! enable build model
Browse files- yolo/config/model/v7-base.yaml +26 -17
- yolo/model/module.py +90 -1
yolo/config/model/v7-base.yaml
CHANGED
|
@@ -1,11 +1,17 @@
|
|
|
|
|
|
|
|
| 1 |
anchor:
|
| 2 |
-
|
|
|
|
|
|
|
|
|
|
| 3 |
strides: [8, 16, 32]
|
| 4 |
|
| 5 |
model:
|
| 6 |
backbone:
|
| 7 |
- Conv:
|
| 8 |
args: {out_channels: 32, kernel_size: 3}
|
|
|
|
| 9 |
- Conv:
|
| 10 |
args: {out_channels: 64, kernel_size: 3, stride: 2}
|
| 11 |
- Conv:
|
|
@@ -55,7 +61,7 @@ model:
|
|
| 55 |
args: {out_channels: 128, kernel_size: 3}
|
| 56 |
- Concat:
|
| 57 |
source: [-1, -3, -5, -6]
|
| 58 |
-
tags:
|
| 59 |
- Conv:
|
| 60 |
args: {out_channels: 512, kernel_size: 1}
|
| 61 |
- Pool:
|
|
@@ -86,7 +92,7 @@ model:
|
|
| 86 |
source: [-1, -3, -5, -6]
|
| 87 |
- Conv:
|
| 88 |
args: {out_channels: 1024, kernel_size: 1}
|
| 89 |
-
tags:
|
| 90 |
- Pool:
|
| 91 |
args: {padding: 0}
|
| 92 |
- Conv:
|
|
@@ -115,17 +121,18 @@ model:
|
|
| 115 |
source: [-1, -3, -5, -6]
|
| 116 |
- Conv:
|
| 117 |
args: {out_channels: 1024, kernel_size: 1}
|
| 118 |
-
tags:
|
| 119 |
head:
|
| 120 |
- SPPCSPConv:
|
| 121 |
args: {out_channels: 512}
|
|
|
|
| 122 |
- Conv:
|
| 123 |
args: {out_channels: 256, kernel_size: 1}
|
| 124 |
- UpSample:
|
| 125 |
args: {scale_factor: 2}
|
| 126 |
- Conv:
|
| 127 |
args: {out_channels: 256, kernel_size: 1}
|
| 128 |
-
source:
|
| 129 |
- Concat:
|
| 130 |
source: [-1, -2]
|
| 131 |
- Conv:
|
|
@@ -145,13 +152,14 @@ model:
|
|
| 145 |
source: [-1, -2, -3, -4, -5, -6]
|
| 146 |
- Conv:
|
| 147 |
args: {out_channels: 256, kernel_size: 1}
|
|
|
|
| 148 |
- Conv:
|
| 149 |
args: {out_channels: 128, kernel_size: 1}
|
| 150 |
- UpSample:
|
| 151 |
args: {scale_factor: 2}
|
| 152 |
- Conv:
|
| 153 |
args: {out_channels: 128, kernel_size: 1}
|
| 154 |
-
source:
|
| 155 |
- Concat:
|
| 156 |
source: [-1, -2]
|
| 157 |
- Conv:
|
|
@@ -171,6 +179,7 @@ model:
|
|
| 171 |
source: [-1, -2, -3, -4, -5, -6]
|
| 172 |
- Conv:
|
| 173 |
args: {out_channels: 128, kernel_size: 1}
|
|
|
|
| 174 |
- Pool:
|
| 175 |
args: {padding: 0}
|
| 176 |
- Conv:
|
|
@@ -181,7 +190,7 @@ model:
|
|
| 181 |
- Conv:
|
| 182 |
args: {out_channels: 128, kernel_size: 3, stride: 2}
|
| 183 |
- Concat:
|
| 184 |
-
source: [-1, -3,
|
| 185 |
- Conv:
|
| 186 |
args: {out_channels: 256, kernel_size: 1}
|
| 187 |
- Conv:
|
|
@@ -199,6 +208,7 @@ model:
|
|
| 199 |
source: [-1, -2, -3, -4, -5, -6]
|
| 200 |
- Conv:
|
| 201 |
args: {out_channels: 256, kernel_size: 1}
|
|
|
|
| 202 |
- Pool:
|
| 203 |
args: {padding: 0}
|
| 204 |
- Conv:
|
|
@@ -209,7 +219,7 @@ model:
|
|
| 209 |
- Conv:
|
| 210 |
args: {out_channels: 256, kernel_size: 3, stride: 2}
|
| 211 |
- Concat:
|
| 212 |
-
source: [-1, -3,
|
| 213 |
- Conv:
|
| 214 |
args: {out_channels: 512, kernel_size: 1}
|
| 215 |
- Conv:
|
|
@@ -227,20 +237,19 @@ model:
|
|
| 227 |
source: [-1, -2, -3, -4, -5, -6]
|
| 228 |
- Conv:
|
| 229 |
args: {out_channels: 512, kernel_size: 1}
|
|
|
|
| 230 |
- RepConv:
|
| 231 |
args: {out_channels: 256}
|
| 232 |
-
source:
|
| 233 |
- RepConv:
|
| 234 |
args: {out_channels: 512}
|
| 235 |
-
source:
|
| 236 |
- RepConv:
|
| 237 |
args: {out_channels: 1024}
|
| 238 |
-
source:
|
| 239 |
-
-
|
| 240 |
args:
|
| 241 |
-
|
| 242 |
-
|
| 243 |
-
- [36,75, 76,55, 72,146] # P4/16
|
| 244 |
-
- [142,110, 192,243, 459,401] # P5/32
|
| 245 |
-
source: [102, 103, 104]
|
| 246 |
output: True
|
|
|
|
|
|
| 1 |
+
name: v7-base
|
| 2 |
+
|
| 3 |
anchor:
|
| 4 |
+
anchor:
|
| 5 |
+
- [12,16, 19,36, 40,28] # P5/8
|
| 6 |
+
- [36,75, 76,55, 72,146] # P4/16
|
| 7 |
+
- [142,110, 192,243, 459,401] # P5/32
|
| 8 |
strides: [8, 16, 32]
|
| 9 |
|
| 10 |
model:
|
| 11 |
backbone:
|
| 12 |
- Conv:
|
| 13 |
args: {out_channels: 32, kernel_size: 3}
|
| 14 |
+
source: 0
|
| 15 |
- Conv:
|
| 16 |
args: {out_channels: 64, kernel_size: 3, stride: 2}
|
| 17 |
- Conv:
|
|
|
|
| 61 |
args: {out_channels: 128, kernel_size: 3}
|
| 62 |
- Concat:
|
| 63 |
source: [-1, -3, -5, -6]
|
| 64 |
+
tags: B3
|
| 65 |
- Conv:
|
| 66 |
args: {out_channels: 512, kernel_size: 1}
|
| 67 |
- Pool:
|
|
|
|
| 92 |
source: [-1, -3, -5, -6]
|
| 93 |
- Conv:
|
| 94 |
args: {out_channels: 1024, kernel_size: 1}
|
| 95 |
+
tags: B4
|
| 96 |
- Pool:
|
| 97 |
args: {padding: 0}
|
| 98 |
- Conv:
|
|
|
|
| 121 |
source: [-1, -3, -5, -6]
|
| 122 |
- Conv:
|
| 123 |
args: {out_channels: 1024, kernel_size: 1}
|
| 124 |
+
tags: B5
|
| 125 |
head:
|
| 126 |
- SPPCSPConv:
|
| 127 |
args: {out_channels: 512}
|
| 128 |
+
tags: N3
|
| 129 |
- Conv:
|
| 130 |
args: {out_channels: 256, kernel_size: 1}
|
| 131 |
- UpSample:
|
| 132 |
args: {scale_factor: 2}
|
| 133 |
- Conv:
|
| 134 |
args: {out_channels: 256, kernel_size: 1}
|
| 135 |
+
source: B4
|
| 136 |
- Concat:
|
| 137 |
source: [-1, -2]
|
| 138 |
- Conv:
|
|
|
|
| 152 |
source: [-1, -2, -3, -4, -5, -6]
|
| 153 |
- Conv:
|
| 154 |
args: {out_channels: 256, kernel_size: 1}
|
| 155 |
+
tags: N2
|
| 156 |
- Conv:
|
| 157 |
args: {out_channels: 128, kernel_size: 1}
|
| 158 |
- UpSample:
|
| 159 |
args: {scale_factor: 2}
|
| 160 |
- Conv:
|
| 161 |
args: {out_channels: 128, kernel_size: 1}
|
| 162 |
+
source: B3
|
| 163 |
- Concat:
|
| 164 |
source: [-1, -2]
|
| 165 |
- Conv:
|
|
|
|
| 179 |
source: [-1, -2, -3, -4, -5, -6]
|
| 180 |
- Conv:
|
| 181 |
args: {out_channels: 128, kernel_size: 1}
|
| 182 |
+
tags: P3
|
| 183 |
- Pool:
|
| 184 |
args: {padding: 0}
|
| 185 |
- Conv:
|
|
|
|
| 190 |
- Conv:
|
| 191 |
args: {out_channels: 128, kernel_size: 3, stride: 2}
|
| 192 |
- Concat:
|
| 193 |
+
source: [-1, -3, N2]
|
| 194 |
- Conv:
|
| 195 |
args: {out_channels: 256, kernel_size: 1}
|
| 196 |
- Conv:
|
|
|
|
| 208 |
source: [-1, -2, -3, -4, -5, -6]
|
| 209 |
- Conv:
|
| 210 |
args: {out_channels: 256, kernel_size: 1}
|
| 211 |
+
tags: P4
|
| 212 |
- Pool:
|
| 213 |
args: {padding: 0}
|
| 214 |
- Conv:
|
|
|
|
| 219 |
- Conv:
|
| 220 |
args: {out_channels: 256, kernel_size: 3, stride: 2}
|
| 221 |
- Concat:
|
| 222 |
+
source: [-1, -3, N3]
|
| 223 |
- Conv:
|
| 224 |
args: {out_channels: 512, kernel_size: 1}
|
| 225 |
- Conv:
|
|
|
|
| 237 |
source: [-1, -2, -3, -4, -5, -6]
|
| 238 |
- Conv:
|
| 239 |
args: {out_channels: 512, kernel_size: 1}
|
| 240 |
+
tags: P5
|
| 241 |
- RepConv:
|
| 242 |
args: {out_channels: 256}
|
| 243 |
+
source: P3
|
| 244 |
- RepConv:
|
| 245 |
args: {out_channels: 512}
|
| 246 |
+
source: P4
|
| 247 |
- RepConv:
|
| 248 |
args: {out_channels: 1024}
|
| 249 |
+
source: P5
|
| 250 |
+
- MultiheadDetection:
|
| 251 |
args:
|
| 252 |
+
version: v7
|
| 253 |
+
source: [-3, -2, -1]
|
|
|
|
|
|
|
|
|
|
| 254 |
output: True
|
| 255 |
+
tags: Main
|
yolo/model/module.py
CHANGED
|
@@ -91,13 +91,40 @@ class Detection(nn.Module):
|
|
| 91 |
return class_x, anchor_x, vector_x
|
| 92 |
|
| 93 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 94 |
class MultiheadDetection(nn.Module):
|
| 95 |
"""Mutlihead Detection module for Dual detect or Triple detect"""
|
| 96 |
|
| 97 |
def __init__(self, in_channels: List[int], num_classes: int, **head_kwargs):
|
| 98 |
super().__init__()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 99 |
self.heads = nn.ModuleList(
|
| 100 |
-
[
|
| 101 |
)
|
| 102 |
|
| 103 |
def forward(self, x_list: List[torch.Tensor]) -> List[torch.Tensor]:
|
|
@@ -320,6 +347,32 @@ class CBLinear(nn.Module):
|
|
| 320 |
return x.split(self.out_channels, dim=1)
|
| 321 |
|
| 322 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 323 |
class SPPELAN(nn.Module):
|
| 324 |
"""SPPELAN module comprising multiple pooling and convolution layers."""
|
| 325 |
|
|
@@ -360,3 +413,39 @@ class CBFuse(nn.Module):
|
|
| 360 |
res = [F.interpolate(x[pick_id], size=target_size, mode=self.mode) for pick_id, x in zip(self.idx, x_list)]
|
| 361 |
out = torch.stack(res + [target]).sum(dim=0)
|
| 362 |
return out
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 91 |
return class_x, anchor_x, vector_x
|
| 92 |
|
| 93 |
|
| 94 |
+
class IDetection(nn.Module):
|
| 95 |
+
def __init__(self, in_channels: Tuple[int], num_classes: int, *args, anchor_num: int = 3, **kwargs):
|
| 96 |
+
super().__init__()
|
| 97 |
+
|
| 98 |
+
if isinstance(in_channels, tuple):
|
| 99 |
+
in_channels = in_channels[1]
|
| 100 |
+
|
| 101 |
+
out_channel = num_classes + 5
|
| 102 |
+
out_channels = out_channel * anchor_num
|
| 103 |
+
self.head_conv = nn.Conv2d(in_channels, out_channels, 1)
|
| 104 |
+
|
| 105 |
+
self.implicit_a = ImplicitA(in_channels)
|
| 106 |
+
self.implicit_m = ImplicitM(out_channels)
|
| 107 |
+
|
| 108 |
+
def forward(self, x):
|
| 109 |
+
x = self.implicit_a(x)
|
| 110 |
+
x = self.head_conv(x)
|
| 111 |
+
x = self.implicit_m(x)
|
| 112 |
+
|
| 113 |
+
return x
|
| 114 |
+
|
| 115 |
+
|
| 116 |
class MultiheadDetection(nn.Module):
|
| 117 |
"""Mutlihead Detection module for Dual detect or Triple detect"""
|
| 118 |
|
| 119 |
def __init__(self, in_channels: List[int], num_classes: int, **head_kwargs):
|
| 120 |
super().__init__()
|
| 121 |
+
DetectionHead = Detection
|
| 122 |
+
|
| 123 |
+
if head_kwargs.pop("version", None) == "v7":
|
| 124 |
+
DetectionHead = IDetection
|
| 125 |
+
|
| 126 |
self.heads = nn.ModuleList(
|
| 127 |
+
[DetectionHead((in_channels[0], in_channel), num_classes, **head_kwargs) for in_channel in in_channels]
|
| 128 |
)
|
| 129 |
|
| 130 |
def forward(self, x_list: List[torch.Tensor]) -> List[torch.Tensor]:
|
|
|
|
| 347 |
return x.split(self.out_channels, dim=1)
|
| 348 |
|
| 349 |
|
| 350 |
+
class SPPCSPConv(nn.Module):
|
| 351 |
+
# CSP https://github.com/WongKinYiu/CrossStagePartialNetworks
|
| 352 |
+
def __init__(self, in_channels: int, out_channels: int, expand: float = 0.5, kernel_sizes: Tuple[int] = (5, 9, 13)):
|
| 353 |
+
super().__init__()
|
| 354 |
+
neck_channels = int(2 * out_channels * expand)
|
| 355 |
+
self.pre_conv = nn.Sequential(
|
| 356 |
+
Conv(in_channels, neck_channels, 1),
|
| 357 |
+
Conv(neck_channels, neck_channels, 3),
|
| 358 |
+
Conv(neck_channels, neck_channels, 1),
|
| 359 |
+
)
|
| 360 |
+
self.short_conv = Conv(in_channels, neck_channels, 1)
|
| 361 |
+
self.pools = nn.ModuleList([Pool(kernel_size=kernel_size, stride=1) for kernel_size in kernel_sizes])
|
| 362 |
+
self.post_conv = nn.Sequential(Conv(4 * neck_channels, neck_channels, 1), Conv(neck_channels, neck_channels, 3))
|
| 363 |
+
self.merge_conv = Conv(2 * neck_channels, out_channels, 1)
|
| 364 |
+
|
| 365 |
+
def forward(self, x):
|
| 366 |
+
features = [self.pre_conv(x)]
|
| 367 |
+
for pool in self.pools:
|
| 368 |
+
features.append(pool(features[-1]))
|
| 369 |
+
features = torch.cat(features, dim=1)
|
| 370 |
+
y1 = self.post_conv(features)
|
| 371 |
+
y2 = self.short_conv(x)
|
| 372 |
+
y = torch.cat((y1, y2), dim=1)
|
| 373 |
+
return self.merge_conv(y)
|
| 374 |
+
|
| 375 |
+
|
| 376 |
class SPPELAN(nn.Module):
|
| 377 |
"""SPPELAN module comprising multiple pooling and convolution layers."""
|
| 378 |
|
|
|
|
| 413 |
res = [F.interpolate(x[pick_id], size=target_size, mode=self.mode) for pick_id, x in zip(self.idx, x_list)]
|
| 414 |
out = torch.stack(res + [target]).sum(dim=0)
|
| 415 |
return out
|
| 416 |
+
|
| 417 |
+
|
| 418 |
+
class ImplicitA(nn.Module):
|
| 419 |
+
"""
|
| 420 |
+
Implement YOLOR - implicit knowledge(Add), paper: https://arxiv.org/abs/2105.04206
|
| 421 |
+
"""
|
| 422 |
+
|
| 423 |
+
def __init__(self, channel: int, mean: float = 0.0, std: float = 0.02):
|
| 424 |
+
super().__init__()
|
| 425 |
+
self.channel = channel
|
| 426 |
+
self.mean = mean
|
| 427 |
+
self.std = std
|
| 428 |
+
|
| 429 |
+
self.implicit = nn.Parameter(torch.empty(1, channel, 1, 1))
|
| 430 |
+
nn.init.normal_(self.implicit, mean=mean, std=self.std)
|
| 431 |
+
|
| 432 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 433 |
+
return self.implicit + x
|
| 434 |
+
|
| 435 |
+
|
| 436 |
+
class ImplicitM(nn.Module):
|
| 437 |
+
"""
|
| 438 |
+
Implement YOLOR - implicit knowledge(multiply), paper: https://arxiv.org/abs/2105.04206
|
| 439 |
+
"""
|
| 440 |
+
|
| 441 |
+
def __init__(self, channel: int, mean: float = 1.0, std: float = 0.02):
|
| 442 |
+
super().__init__()
|
| 443 |
+
self.channel = channel
|
| 444 |
+
self.mean = mean
|
| 445 |
+
self.std = std
|
| 446 |
+
|
| 447 |
+
self.implicit = nn.Parameter(torch.empty(1, channel, 1, 1))
|
| 448 |
+
nn.init.normal_(self.implicit, mean=self.mean, std=self.std)
|
| 449 |
+
|
| 450 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 451 |
+
return self.implicit * x
|