Spaces:
Sleeping
Sleeping
π [Update] README, modified link, typo, and table
Browse files- README.md +29 -15
- docs/MODELS.md +12 -13
README.md
CHANGED
|
@@ -1,4 +1,4 @@
|
|
| 1 |
-
# YOLO: Official Implementation of
|
| 2 |
|
| 3 |

|
| 4 |
> [!IMPORTANT]
|
|
@@ -29,22 +29,36 @@ pip install -r requirements.txt
|
|
| 29 |
```
|
| 30 |
|
| 31 |
## Features
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 42 |
|
| 43 |
## Task
|
| 44 |
-
These are simple examples. For more customization details, please refer to [Notebooks](examples) and lower-level modifications **[HOWTO](docs/HOWTO)**.
|
| 45 |
|
| 46 |
## Training
|
| 47 |
-
To train
|
| 48 |
|
| 49 |
1. Modify the configuration file `data/config.yaml` to point to your dataset.
|
| 50 |
2. Run the training script:
|
|
@@ -62,7 +76,7 @@ python yolo/lazy.py task=train task.data.batch_size=8 model=v9-c dataset={datase
|
|
| 62 |
To evaluate the model performance, use:
|
| 63 |
```shell
|
| 64 |
python yolo/lazy.py task=inference weight=weights/v9-c.pt model=v9-c task.fast_inference=deploy # use deploy weight
|
| 65 |
-
python
|
| 66 |
yolo task=inference task.data.source={Any} # if pip installed
|
| 67 |
```
|
| 68 |
|
|
@@ -76,7 +90,7 @@ To validate the model performance, use:
|
|
| 76 |
Contributions to the YOLOv9 project are welcome! See [CONTRIBUTING](docs/CONTRIBUTING.md) for guidelines on how to contribute.
|
| 77 |
|
| 78 |
## Star History
|
| 79 |
-
[
|
| 4 |
> [!IMPORTANT]
|
|
|
|
| 29 |
```
|
| 30 |
|
| 31 |
## Features
|
| 32 |
+
|
| 33 |
+
<table>
|
| 34 |
+
<tr><td>
|
| 35 |
+
|
| 36 |
+
| Features Supported | pip π | Hugging Face π€ | Docker π³ |
|
| 37 |
+
| -------------------- | :----: | :--------------: | :-------: |
|
| 38 |
+
| Compatibility | β
| β | π§ͺ |
|
| 39 |
+
|
| 40 |
+
| Processing Phase | Training | Validation | Inference |
|
| 41 |
+
| ------------------- | :------: | :---------: | :-------: |
|
| 42 |
+
| Supported | β
| β
| β
|
|
| 43 |
+
|
| 44 |
+
</td><td>
|
| 45 |
+
|
| 46 |
+
| Supporting Device | CUDA | CPU | MPS |
|
| 47 |
+
| ------------------ | :---------: | :-------: | :-------: |
|
| 48 |
+
| PyTorch | v1.12 | v2.3+ | v1.12 |
|
| 49 |
+
| ONNX | β
| β
| - |
|
| 50 |
+
| TensorRT | π§ͺ | π§ͺ | - |
|
| 51 |
+
| OpenVINO | - | π§ͺ | β |
|
| 52 |
+
|
| 53 |
+
</td></tr> </table>
|
| 54 |
+
|
| 55 |
+
|
| 56 |
|
| 57 |
## Task
|
| 58 |
+
These are simple examples. For more customization details, please refer to [Notebooks](examples) and lower-level modifications **[HOWTO](docs/HOWTO.md)**.
|
| 59 |
|
| 60 |
## Training
|
| 61 |
+
To train YOLO on your dataset:
|
| 62 |
|
| 63 |
1. Modify the configuration file `data/config.yaml` to point to your dataset.
|
| 64 |
2. Run the training script:
|
|
|
|
| 76 |
To evaluate the model performance, use:
|
| 77 |
```shell
|
| 78 |
python yolo/lazy.py task=inference weight=weights/v9-c.pt model=v9-c task.fast_inference=deploy # use deploy weight
|
| 79 |
+
python yolo/lazy.py task=inference # if cloned from GitHub
|
| 80 |
yolo task=inference task.data.source={Any} # if pip installed
|
| 81 |
```
|
| 82 |
|
|
|
|
| 90 |
Contributions to the YOLOv9 project are welcome! See [CONTRIBUTING](docs/CONTRIBUTING.md) for guidelines on how to contribute.
|
| 91 |
|
| 92 |
## Star History
|
| 93 |
+
[](https://star-history.com/#WongKinYiu/YOLO&Date)
|
| 94 |
|
| 95 |
## Citations
|
| 96 |
```
|
docs/MODELS.md
CHANGED
|
@@ -7,20 +7,19 @@ Welcome to the YOLOv9 Model Zoo! Here, you will find a variety of pre-trained mo
|
|
| 7 |
These models are trained on common datasets like COCO and provide a balance between speed and accuracy.
|
| 8 |
|
| 9 |
|
| 10 |
-
| Model | Test Size | AP<sup>val</sup> | AP<sub>50</sub><sup>val</sup> | AP<sub>75</sub><sup>val</sup> | Param. | FLOPs |
|
| 11 |
-
| :-- | :-: | :-: | :-: | :-: | :-: | :-: |
|
| 12 |
-
| [**YOLOv9-
|
| 13 |
-
| [**YOLOv9-
|
| 14 |
-
| [**YOLOv9-
|
| 15 |
-
| [**YOLOv9-
|
| 16 |
-
| [**YOLOv9-E**]() | 640 | **55.6%** | **72.8%** | **60.6%** | **57.3M** | **189.0G** |
|
| 17 |
| | | | | | | |
|
| 18 |
-
| [**YOLOv7**]() | 640
|
| 19 |
-
| [**YOLOv7-X**]() | 640
|
| 20 |
-
| [**YOLOv7-W6**]() | 1280 | **54.9%** | **72.6%** | **60.1%** |
|
| 21 |
-
| [**YOLOv7-E6**]() | 1280 | **56.0%** | **73.5%** | **61.2%** |
|
| 22 |
-
| [**YOLOv7-D6**]() | 1280 | **56.6%** | **74.0%** | **61.8%** |
|
| 23 |
-
| [**YOLOv7-E6E**]() | 1280 | **56.8%** | **74.4%** | **62.1%** |
|
| 24 |
|
| 25 |
## Download and Usage Instructions
|
| 26 |
|
|
|
|
| 7 |
These models are trained on common datasets like COCO and provide a balance between speed and accuracy.
|
| 8 |
|
| 9 |
|
| 10 |
+
| Model | Support? |Test Size | AP<sup>val</sup> | AP<sub>50</sub><sup>val</sup> | AP<sub>75</sub><sup>val</sup> | Param. | FLOPs |
|
| 11 |
+
| :-- | :-: | :-: | :-: | :-: | :-: | :-: | :-: |
|
| 12 |
+
| [**YOLOv9-S**]() |β
| 640 | **46.8%** | **63.4%** | **50.7%** | **7.1M** | **26.4G** |
|
| 13 |
+
| [**YOLOv9-M**]() |β
| 640 | **51.4%** | **68.1%** | **56.1%** | **20.0M** | **76.3G** |
|
| 14 |
+
| [**YOLOv9-C**]() |β
| 640 | **53.0%** | **70.2%** | **57.8%** | **25.3M** | **102.1G** |
|
| 15 |
+
| [**YOLOv9-E**]() | π§ | 640 | **55.6%** | **72.8%** | **60.6%** | **57.3M** | **189.0G** |
|
|
|
|
| 16 |
| | | | | | | |
|
| 17 |
+
| [**YOLOv7**]() |π§ | 640 | **51.4%** | **69.7%** | **55.9%** |
|
| 18 |
+
| [**YOLOv7-X**]() |π§ | 640 | **53.1%** | **71.2%** | **57.8%** |
|
| 19 |
+
| [**YOLOv7-W6**]() | π§ | 1280 | **54.9%** | **72.6%** | **60.1%** |
|
| 20 |
+
| [**YOLOv7-E6**]() | π§ | 1280 | **56.0%** | **73.5%** | **61.2%** |
|
| 21 |
+
| [**YOLOv7-D6**]() | π§ | 1280 | **56.6%** | **74.0%** | **61.8%** |
|
| 22 |
+
| [**YOLOv7-E6E**]() | π§ | 1280 | **56.8%** | **74.4%** | **62.1%** |
|
| 23 |
|
| 24 |
## Download and Usage Instructions
|
| 25 |
|