Spaces:
Running
Running
Kin-Yiu, Wong
commited on
Create layers.py
Browse files- yolov9/models/layers.py +267 -0
yolov9/models/layers.py
ADDED
|
@@ -0,0 +1,267 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import torch.nn as nn
|
| 3 |
+
|
| 4 |
+
# basic
|
| 5 |
+
|
| 6 |
+
class Conv(nn.Module):
|
| 7 |
+
# basic convlution
|
| 8 |
+
def __init__(self, in_channels, out_channels, kernel_size,
|
| 9 |
+
stride=1, padding=0, dilation=1, groups=1, act=nn.ReLU(),
|
| 10 |
+
bias=False, auto_padding=True, padding_mode='zeros'):
|
| 11 |
+
|
| 12 |
+
super().__init__()
|
| 13 |
+
|
| 14 |
+
# not yet handle the case when dilation is a tuple
|
| 15 |
+
if auto_padding:
|
| 16 |
+
if isinstance(kernel_size, int):
|
| 17 |
+
padding = (dilation * (kernel_size - 1) + 1) // 2
|
| 18 |
+
else:
|
| 19 |
+
padding = [(dilation * (k - 1) + 1) // 2 for k in kernel_size]
|
| 20 |
+
|
| 21 |
+
self.conv = nn.Conv2d(in_channels, out_channels, kernel_size, stride, padding, groups=groups, dilation=dilation, bias=bias)
|
| 22 |
+
self.bn = nn.BatchNorm2d(out_channels)
|
| 23 |
+
self.act = act if isinstance(act, nn.Module) else nn.Identity()
|
| 24 |
+
|
| 25 |
+
def forward(self, x):
|
| 26 |
+
return self.act(self.bn(self.conv(x)))
|
| 27 |
+
|
| 28 |
+
def forward_fuse(self, x):
|
| 29 |
+
return self.act(self.conv(x))
|
| 30 |
+
|
| 31 |
+
# to be implement
|
| 32 |
+
# def fuse_conv_bn(self):
|
| 33 |
+
|
| 34 |
+
|
| 35 |
+
# RepVGG
|
| 36 |
+
|
| 37 |
+
class RepConv(nn.Module):
|
| 38 |
+
# https://github.com/DingXiaoH/RepVGG
|
| 39 |
+
def __init__(self, in_channels, out_channels, kernel_size=3,
|
| 40 |
+
stride=1, groups=1, act=nn.ReLU()):
|
| 41 |
+
|
| 42 |
+
super().__init__()
|
| 43 |
+
|
| 44 |
+
self.conv1 = Conv(in_channels, out_channels, kernel_size, stride, groups=groups, act=False)
|
| 45 |
+
self.conv2 = Conv(in_channels, out_channels, 1, stride, groups=groups, act=False)
|
| 46 |
+
self.act = act if isinstance(act, nn.Module) else nn.Identity()
|
| 47 |
+
|
| 48 |
+
def forward(self, x):
|
| 49 |
+
return self.act(self.conv1(x) + self.conv2(x))
|
| 50 |
+
|
| 51 |
+
def forward_fuse(self, x):
|
| 52 |
+
return self.act(self.conv(x))
|
| 53 |
+
|
| 54 |
+
# to be implement
|
| 55 |
+
# def fuse_convs(self):
|
| 56 |
+
|
| 57 |
+
|
| 58 |
+
# ResNet
|
| 59 |
+
|
| 60 |
+
class Res(nn.Module):
|
| 61 |
+
# ResNet bottleneck
|
| 62 |
+
def __init__(self, in_channels, out_channels,
|
| 63 |
+
groups=1, act=nn.ReLU(), ratio=0.25):
|
| 64 |
+
|
| 65 |
+
super().__init__()
|
| 66 |
+
|
| 67 |
+
h_channels = int(in_channels * ratio)
|
| 68 |
+
self.cv1 = Conv(in_channels, h_channels, 1, 1, act=act)
|
| 69 |
+
self.cv2 = Conv(h_channels, h_channels, 3, 1, groups=groups, act=act)
|
| 70 |
+
self.cv3 = Conv(h_channels, out_channels, 1, 1, act=act)
|
| 71 |
+
|
| 72 |
+
def forward(self, x):
|
| 73 |
+
return x + self.cv3(self.cv2(self.cv1(x)))
|
| 74 |
+
|
| 75 |
+
|
| 76 |
+
class RepRes(nn.Module):
|
| 77 |
+
# RepResNet bottleneck
|
| 78 |
+
def __init__(self, in_channels, out_channels,
|
| 79 |
+
groups=1, act=nn.ReLU(), ratio=0.25):
|
| 80 |
+
|
| 81 |
+
super().__init__()
|
| 82 |
+
|
| 83 |
+
h_channels = int(in_channels * ratio)
|
| 84 |
+
self.cv1 = Conv(in_channels, h_channels, 1, 1, act=act)
|
| 85 |
+
self.cv2 = RepConv(h_channels, h_channels, 3, 1, groups=groups, act=act)
|
| 86 |
+
self.cv3 = Conv(h_channels, out_channels, 1, 1, act=act)
|
| 87 |
+
|
| 88 |
+
def forward(self, x):
|
| 89 |
+
return x + self.cv3(self.cv2(self.cv1(x)))
|
| 90 |
+
|
| 91 |
+
|
| 92 |
+
class ConvBlock(nn.Module):
|
| 93 |
+
# ConvBlock
|
| 94 |
+
def __init__(self, in_channels,
|
| 95 |
+
repeat=1, act=nn.ReLU(), ratio=1.0):
|
| 96 |
+
|
| 97 |
+
super().__init__()
|
| 98 |
+
|
| 99 |
+
h_channels = int(in_channels * ratio)
|
| 100 |
+
self.cv1 = Conv(in_channels, in_channels, 3, 1, act=act) if repeat == 1 else Conv(in_channels, h_channels, 3, 1, act=act)
|
| 101 |
+
self.cb = nn.Sequential(*(Conv(in_channels, in_channels, 3, 1, act=act) for _ in range(repeat-2))) if repeat > 2 else nn.Identity()
|
| 102 |
+
self.cv2 = nn.Identity() if repeat == 1 else Conv(h_channels, in_channels, 3, 1, act=act)
|
| 103 |
+
|
| 104 |
+
def forward(self, x):
|
| 105 |
+
return self.cv2(self.cb(self.cv1(x)))
|
| 106 |
+
|
| 107 |
+
|
| 108 |
+
class RepConvBlock(nn.Module):
|
| 109 |
+
# ConvBlock
|
| 110 |
+
def __init__(self, in_channels,
|
| 111 |
+
repeat=1, act=nn.ReLU(), ratio=1.0):
|
| 112 |
+
|
| 113 |
+
super().__init__()
|
| 114 |
+
|
| 115 |
+
h_channels = int(in_channels * ratio)
|
| 116 |
+
self.cv1 = Conv(in_channels, in_channels, 3, 1, act=act) if repeat == 1 else RepConv(in_channels, h_channels, 3, 1, act=act)
|
| 117 |
+
self.cb = nn.Sequential(*(RepConv(in_channels, in_channels, 3, 1, act=act) for _ in range(repeat-2))) if repeat > 2 else nn.Identity()
|
| 118 |
+
self.cv2 = nn.Identity() if repeat == 1 else Conv(h_channels, in_channels, 3, 1, act=act)
|
| 119 |
+
|
| 120 |
+
def forward(self, x):
|
| 121 |
+
return self.cv2(self.cb(self.cv1(x)))
|
| 122 |
+
|
| 123 |
+
|
| 124 |
+
class ResConvBlock(nn.Module):
|
| 125 |
+
# ResConvBlock
|
| 126 |
+
def __init__(self, in_channels,
|
| 127 |
+
repeat=1, act=nn.ReLU(), ratio=1.0):
|
| 128 |
+
|
| 129 |
+
super().__init__()
|
| 130 |
+
|
| 131 |
+
h_channels = int(in_channels * ratio)
|
| 132 |
+
self.cv1 = Conv(in_channels, in_channels, 3, 1, act=act) if repeat == 1 else Conv(in_channels, h_channels, 3, 1, act=act)
|
| 133 |
+
self.cb = nn.Sequential(*(Conv(in_channels, in_channels, 3, 1, act=act) for _ in range(repeat-2))) if repeat > 2 else nn.Identity()
|
| 134 |
+
self.cv2 = nn.Identity() if repeat == 1 else Conv(h_channels, in_channels, 3, 1, act=act)
|
| 135 |
+
|
| 136 |
+
def forward(self, x):
|
| 137 |
+
return x + self.cv2(self.cb(self.cv1(x)))
|
| 138 |
+
|
| 139 |
+
|
| 140 |
+
class ResRepConvBlock(nn.Module):
|
| 141 |
+
# ResConvBlock
|
| 142 |
+
def __init__(self, in_channels,
|
| 143 |
+
repeat=1, act=nn.ReLU(), ratio=1.0):
|
| 144 |
+
|
| 145 |
+
super().__init__()
|
| 146 |
+
|
| 147 |
+
h_channels = int(in_channels * ratio)
|
| 148 |
+
self.cv1 = Conv(in_channels, in_channels, 3, 1, act=act) if repeat == 1 else RepConv(in_channels, h_channels, 3, 1, act=act)
|
| 149 |
+
self.cb = nn.Sequential(*(RepConv(in_channels, in_channels, 3, 1, act=act) for _ in range(repeat-2))) if repeat > 2 else nn.Identity()
|
| 150 |
+
self.cv2 = nn.Identity() if repeat == 1 else Conv(h_channels, in_channels, 3, 1, act=act)
|
| 151 |
+
|
| 152 |
+
def forward(self, x):
|
| 153 |
+
return x + self.cv2(self.cb(self.cv1(x)))
|
| 154 |
+
|
| 155 |
+
|
| 156 |
+
# Darknet
|
| 157 |
+
|
| 158 |
+
class Dark(nn.Module):
|
| 159 |
+
# DarkNet bottleneck
|
| 160 |
+
def __init__(self, in_channels, out_channels,
|
| 161 |
+
groups=1, act=nn.ReLU(), ratio=0.5):
|
| 162 |
+
|
| 163 |
+
super().__init__()
|
| 164 |
+
|
| 165 |
+
h_channels = int(in_channels * ratio)
|
| 166 |
+
self.cv1 = Conv(in_channels, h_channels, 1, 1, act=act)
|
| 167 |
+
self.cv2 = Conv(h_channels, out_channels, 3, 1, groups=groups, act=act)
|
| 168 |
+
|
| 169 |
+
def forward(self, x):
|
| 170 |
+
return x + self.cv2(self.cv1(x))
|
| 171 |
+
|
| 172 |
+
|
| 173 |
+
class RepDark(nn.Module):
|
| 174 |
+
# RepDarkNet bottleneck
|
| 175 |
+
def __init__(self, in_channels, out_channels,
|
| 176 |
+
groups=1, act=nn.ReLU(), ratio=0.5):
|
| 177 |
+
|
| 178 |
+
super().__init__()
|
| 179 |
+
|
| 180 |
+
h_channels = int(in_channels * ratio)
|
| 181 |
+
self.cv1 = RepConv(in_channels, h_channels, 3, 1, groups=groups, act=act)
|
| 182 |
+
self.cv2 = Conv(h_channels, out_channels, 1, 1, act=act)
|
| 183 |
+
|
| 184 |
+
def forward(self, x):
|
| 185 |
+
return x + self.cv2(self.cv1(x))
|
| 186 |
+
|
| 187 |
+
|
| 188 |
+
# CSPNet
|
| 189 |
+
|
| 190 |
+
class CSP(nn.Module):
|
| 191 |
+
# CSPNet
|
| 192 |
+
def __init__(self, in_channels, out_channels,
|
| 193 |
+
repeat=1, cb_repeat=2, act=nn.ReLU(), ratio=1.0):
|
| 194 |
+
|
| 195 |
+
super().__init__()
|
| 196 |
+
|
| 197 |
+
h_channels = in_channels // 2
|
| 198 |
+
self.cv1 = Conv(in_channels, in_channels, 1, 1, act=act)
|
| 199 |
+
self.cb = nn.Sequential(*(ResConvBlock(h_channels, act=act, repeat=cb_repeat) for _ in range(repeat)))
|
| 200 |
+
self.cv2 = Conv(2 * h_channels, out_channels, 1, 1, act=act)
|
| 201 |
+
|
| 202 |
+
def forward(self, x):
|
| 203 |
+
|
| 204 |
+
y = list(self.cv1(x).chunk(2, 1))
|
| 205 |
+
|
| 206 |
+
return self.cv2(torch.cat((self.cb(y[0]), y[1]), 1))
|
| 207 |
+
|
| 208 |
+
|
| 209 |
+
class CSPDark(nn.Module):
|
| 210 |
+
# CSPNet
|
| 211 |
+
def __init__(self, in_channels, out_channels,
|
| 212 |
+
repeat=1, groups=1, act=nn.ReLU(), ratio=1.0):
|
| 213 |
+
|
| 214 |
+
super().__init__()
|
| 215 |
+
|
| 216 |
+
h_channels = in_channels // 2
|
| 217 |
+
self.cv1 = Conv(in_channels, in_channels, 1, 1, act=act)
|
| 218 |
+
self.cb = nn.Sequential(*(Dark(h_channels, h_channels, groups=groups, act=act, ratio=ratio) for _ in range(repeat)))
|
| 219 |
+
self.cv2 = Conv(2 * h_channels, out_channels, 1, 1, act=act)
|
| 220 |
+
|
| 221 |
+
def forward(self, x):
|
| 222 |
+
|
| 223 |
+
y = list(self.cv1(x).chunk(2, 1))
|
| 224 |
+
|
| 225 |
+
return self.cv2(torch.cat((self.cb(y[0]), y[1]), 1))
|
| 226 |
+
|
| 227 |
+
|
| 228 |
+
# ELAN
|
| 229 |
+
|
| 230 |
+
class ELAN(nn.Module):
|
| 231 |
+
# ELAN
|
| 232 |
+
def __init__(self, in_channels, out_channels, med_channels,
|
| 233 |
+
elan_repeat=2, cb_repeat=2, ratio=1.0):
|
| 234 |
+
|
| 235 |
+
super().__init__()
|
| 236 |
+
|
| 237 |
+
h_channels = med_channels // 2
|
| 238 |
+
self.cv1 = Conv(in_channels, med_channels, 1, 1)
|
| 239 |
+
self.cb = nn.ModuleList(ConvBlock(h_channels, repeat=cb_repeat, ratio=ratio) for _ in range(elan_repeat))
|
| 240 |
+
self.cv2 = Conv((2+elan_repeat) * h_channels, out_channels, 1, 1)
|
| 241 |
+
|
| 242 |
+
def forward(self, x):
|
| 243 |
+
|
| 244 |
+
y = list(self.cv1(x).chunk(2, 1))
|
| 245 |
+
y.extend((m(y[-1])) for m in self.cb)
|
| 246 |
+
|
| 247 |
+
return self.cv2(torch.cat(y, 1))
|
| 248 |
+
|
| 249 |
+
|
| 250 |
+
class CSPELAN(nn.Module):
|
| 251 |
+
# ELAN
|
| 252 |
+
def __init__(self, in_channels, out_channels, med_channels,
|
| 253 |
+
elan_repeat=2, cb_repeat=2, ratio=1.0):
|
| 254 |
+
|
| 255 |
+
super().__init__()
|
| 256 |
+
|
| 257 |
+
h_channels = med_channels // 2
|
| 258 |
+
self.cv1 = Conv(in_channels, med_channels, 1, 1)
|
| 259 |
+
self.cb = nn.ModuleList(CSP(h_channels, h_channels, repeat=cb_repeat, ratio=ratio) for _ in range(elan_repeat))
|
| 260 |
+
self.cv2 = Conv((2+elan_repeat) * h_channels, out_channels, 1, 1)
|
| 261 |
+
|
| 262 |
+
def forward(self, x):
|
| 263 |
+
|
| 264 |
+
y = list(self.cv1(x).chunk(2, 1))
|
| 265 |
+
y.extend((m(y[-1])) for m in self.cb)
|
| 266 |
+
|
| 267 |
+
return self.cv2(torch.cat(y, 1))
|