Spaces:
Sleeping
Sleeping
π [Merge] branch 'main' into SETUP
Browse files- yolo/model/yolo.py +34 -1
- yolo/utils/dataset_utils.py +4 -1
yolo/model/yolo.py
CHANGED
|
@@ -1,3 +1,4 @@
|
|
|
|
|
| 1 |
from pathlib import Path
|
| 2 |
from typing import Dict, List, Union
|
| 3 |
|
|
@@ -114,6 +115,36 @@ class YOLO(nn.Module):
|
|
| 114 |
else:
|
| 115 |
raise ValueError(f"Unsupported layer type: {layer_type}")
|
| 116 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 117 |
|
| 118 |
def create_model(model_cfg: ModelConfig, weight_path: Union[bool, Path] = True, class_num: int = 80) -> YOLO:
|
| 119 |
"""Constructs and returns a model from a Dictionary configuration file.
|
|
@@ -129,11 +160,13 @@ def create_model(model_cfg: ModelConfig, weight_path: Union[bool, Path] = True,
|
|
| 129 |
if weight_path:
|
| 130 |
if weight_path == True:
|
| 131 |
weight_path = Path("weights") / f"{model_cfg.name}.pt"
|
|
|
|
|
|
|
| 132 |
if not weight_path.exists():
|
| 133 |
logger.info(f"π Weight {weight_path} not found, try downloading")
|
| 134 |
prepare_weight(weight_path=weight_path)
|
| 135 |
if weight_path.exists():
|
| 136 |
-
model.
|
| 137 |
logger.info("β
Success load model & weight")
|
| 138 |
else:
|
| 139 |
logger.info("β
Success load model")
|
|
|
|
| 1 |
+
from collections import OrderedDict
|
| 2 |
from pathlib import Path
|
| 3 |
from typing import Dict, List, Union
|
| 4 |
|
|
|
|
| 115 |
else:
|
| 116 |
raise ValueError(f"Unsupported layer type: {layer_type}")
|
| 117 |
|
| 118 |
+
def save_load_weights(self, weights: Union[Path, OrderedDict]):
|
| 119 |
+
"""
|
| 120 |
+
Update the model's weights with the provided weights.
|
| 121 |
+
|
| 122 |
+
args:
|
| 123 |
+
weights: A OrderedDict containing the new weights.
|
| 124 |
+
"""
|
| 125 |
+
if isinstance(weights, Path):
|
| 126 |
+
weights = torch.load(weights, map_location=torch.device("cpu"))
|
| 127 |
+
model_state_dict = self.model.state_dict()
|
| 128 |
+
|
| 129 |
+
# TODO1: autoload old version weight
|
| 130 |
+
# TODO2: weight transform if num_class difference
|
| 131 |
+
|
| 132 |
+
error_dict = {"Mismatch": set(), "Not Found": set()}
|
| 133 |
+
for model_key, model_weight in model_state_dict.items():
|
| 134 |
+
if model_key not in weights:
|
| 135 |
+
error_dict["Not Found"].add(tuple(model_key.split(".")[:-2]))
|
| 136 |
+
continue
|
| 137 |
+
if model_weight.shape != weights[model_key].shape:
|
| 138 |
+
error_dict["Mismatch"].add(tuple(model_key.split(".")[:-2]))
|
| 139 |
+
continue
|
| 140 |
+
model_state_dict[model_key] = weights[model_key]
|
| 141 |
+
|
| 142 |
+
for error_name, error_set in error_dict.items():
|
| 143 |
+
for weight_name in error_set:
|
| 144 |
+
logger.warning(f"β οΈ Weight {error_name} for key: {'.'.join(weight_name)}")
|
| 145 |
+
|
| 146 |
+
self.model.load_state_dict(model_state_dict)
|
| 147 |
+
|
| 148 |
|
| 149 |
def create_model(model_cfg: ModelConfig, weight_path: Union[bool, Path] = True, class_num: int = 80) -> YOLO:
|
| 150 |
"""Constructs and returns a model from a Dictionary configuration file.
|
|
|
|
| 160 |
if weight_path:
|
| 161 |
if weight_path == True:
|
| 162 |
weight_path = Path("weights") / f"{model_cfg.name}.pt"
|
| 163 |
+
if isinstance(weight_path, str):
|
| 164 |
+
weight_path = Path(weight_path)
|
| 165 |
if not weight_path.exists():
|
| 166 |
logger.info(f"π Weight {weight_path} not found, try downloading")
|
| 167 |
prepare_weight(weight_path=weight_path)
|
| 168 |
if weight_path.exists():
|
| 169 |
+
model.save_load_weights(weight_path)
|
| 170 |
logger.info("β
Success load model & weight")
|
| 171 |
else:
|
| 172 |
logger.info("β
Success load model")
|
yolo/utils/dataset_utils.py
CHANGED
|
@@ -100,7 +100,10 @@ def scale_segmentation(
|
|
| 100 |
h, w = image_dimensions["height"], image_dimensions["width"]
|
| 101 |
for anno in annotations:
|
| 102 |
category_id = anno["category_id"]
|
| 103 |
-
|
|
|
|
|
|
|
|
|
|
| 104 |
scaled_seg_data = (
|
| 105 |
np.array(seg_list).reshape(-1, 2) / [w, h]
|
| 106 |
).tolist() # make the list group in x, y pairs and scaled with image width, height
|
|
|
|
| 100 |
h, w = image_dimensions["height"], image_dimensions["width"]
|
| 101 |
for anno in annotations:
|
| 102 |
category_id = anno["category_id"]
|
| 103 |
+
if "segmentation" in anno:
|
| 104 |
+
seg_list = [item for sublist in anno["segmentation"] for item in sublist]
|
| 105 |
+
elif "bbox" in anno:
|
| 106 |
+
seg_list = anno["bbox"]
|
| 107 |
scaled_seg_data = (
|
| 108 |
np.array(seg_list).reshape(-1, 2) / [w, h]
|
| 109 |
).tolist() # make the list group in x, y pairs and scaled with image width, height
|