Spaces:
Sleeping
Sleeping
🔥 [Remove] YOLOv7 used module, add back when ready
Browse files- yolo/model/module.py +9 -324
yolo/model/module.py
CHANGED
|
@@ -47,6 +47,15 @@ class Pool(nn.Module):
|
|
| 47 |
return self.pool(x)
|
| 48 |
|
| 49 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 50 |
# ----------- Detection Class ----------- #
|
| 51 |
class Detection(nn.Module):
|
| 52 |
"""A single YOLO Detection head for detection models"""
|
|
@@ -351,327 +360,3 @@ class CBFuse(nn.Module):
|
|
| 351 |
res = [F.interpolate(x[pick_id], size=target_size, mode=self.mode) for pick_id, x in zip(self.idx, x_list)]
|
| 352 |
out = torch.stack(res + [target]).sum(dim=0)
|
| 353 |
return out
|
| 354 |
-
|
| 355 |
-
|
| 356 |
-
############# Waiting For Refactor #############
|
| 357 |
-
# ResNet
|
| 358 |
-
class Res(nn.Module):
|
| 359 |
-
# ResNet bottleneck
|
| 360 |
-
def __init__(self, in_channels, out_channels, groups=1, act=nn.ReLU(), ratio=0.25):
|
| 361 |
-
|
| 362 |
-
super().__init__()
|
| 363 |
-
|
| 364 |
-
h_channels = int(in_channels * ratio)
|
| 365 |
-
self.cv1 = Conv(in_channels, h_channels, 1, 1, act=act)
|
| 366 |
-
self.cv2 = Conv(h_channels, h_channels, 3, 1, groups=groups, act=act)
|
| 367 |
-
self.cv3 = Conv(h_channels, out_channels, 1, 1, act=act)
|
| 368 |
-
|
| 369 |
-
def forward(self, x):
|
| 370 |
-
return x + self.cv3(self.cv2(self.cv1(x)))
|
| 371 |
-
|
| 372 |
-
|
| 373 |
-
class RepRes(nn.Module):
|
| 374 |
-
# RepResNet bottleneck
|
| 375 |
-
def __init__(self, in_channels, out_channels, groups=1, act=nn.ReLU(), ratio=0.25):
|
| 376 |
-
|
| 377 |
-
super().__init__()
|
| 378 |
-
|
| 379 |
-
h_channels = int(in_channels * ratio)
|
| 380 |
-
self.cv1 = Conv(in_channels, h_channels, 1, 1, act=act)
|
| 381 |
-
self.cv2 = RepConv(h_channels, h_channels, 3, 1, groups=groups, act=act)
|
| 382 |
-
self.cv3 = Conv(h_channels, out_channels, 1, 1, act=act)
|
| 383 |
-
|
| 384 |
-
def forward(self, x):
|
| 385 |
-
return x + self.cv3(self.cv2(self.cv1(x)))
|
| 386 |
-
|
| 387 |
-
|
| 388 |
-
class ConvBlock(nn.Module):
|
| 389 |
-
# ConvBlock
|
| 390 |
-
def __init__(self, in_channels, repeat=1, act=nn.ReLU(), ratio=1.0):
|
| 391 |
-
|
| 392 |
-
super().__init__()
|
| 393 |
-
|
| 394 |
-
h_channels = int(in_channels * ratio)
|
| 395 |
-
self.cv1 = (
|
| 396 |
-
Conv(in_channels, in_channels, 3, 1, act=act)
|
| 397 |
-
if repeat == 1
|
| 398 |
-
else Conv(in_channels, h_channels, 3, 1, act=act)
|
| 399 |
-
)
|
| 400 |
-
self.cb = (
|
| 401 |
-
nn.Sequential(*(Conv(in_channels, in_channels, 3, 1, act=act) for _ in range(repeat - 2)))
|
| 402 |
-
if repeat > 2
|
| 403 |
-
else nn.Identity()
|
| 404 |
-
)
|
| 405 |
-
self.cv2 = nn.Identity() if repeat == 1 else Conv(h_channels, in_channels, 3, 1, act=act)
|
| 406 |
-
|
| 407 |
-
def forward(self, x):
|
| 408 |
-
return self.cv2(self.cb(self.cv1(x)))
|
| 409 |
-
|
| 410 |
-
|
| 411 |
-
class RepConvBlock(nn.Module):
|
| 412 |
-
# ConvBlock
|
| 413 |
-
def __init__(self, in_channels, repeat=1, act=nn.ReLU(), ratio=1.0):
|
| 414 |
-
|
| 415 |
-
super().__init__()
|
| 416 |
-
|
| 417 |
-
h_channels = int(in_channels * ratio)
|
| 418 |
-
self.cv1 = (
|
| 419 |
-
Conv(in_channels, in_channels, 3, 1, act=act)
|
| 420 |
-
if repeat == 1
|
| 421 |
-
else RepConv(in_channels, h_channels, 3, 1, act=act)
|
| 422 |
-
)
|
| 423 |
-
self.cb = (
|
| 424 |
-
nn.Sequential(*(RepConv(in_channels, in_channels, 3, 1, act=act) for _ in range(repeat - 2)))
|
| 425 |
-
if repeat > 2
|
| 426 |
-
else nn.Identity()
|
| 427 |
-
)
|
| 428 |
-
self.cv2 = nn.Identity() if repeat == 1 else Conv(h_channels, in_channels, 3, 1, act=act)
|
| 429 |
-
|
| 430 |
-
def forward(self, x):
|
| 431 |
-
return self.cv2(self.cb(self.cv1(x)))
|
| 432 |
-
|
| 433 |
-
|
| 434 |
-
class ResConvBlock(nn.Module):
|
| 435 |
-
# ResConvBlock
|
| 436 |
-
def __init__(self, in_channels, repeat=1, act=nn.ReLU(), ratio=1.0):
|
| 437 |
-
|
| 438 |
-
super().__init__()
|
| 439 |
-
|
| 440 |
-
h_channels = int(in_channels * ratio)
|
| 441 |
-
self.cv1 = (
|
| 442 |
-
Conv(in_channels, in_channels, 3, 1, act=act)
|
| 443 |
-
if repeat == 1
|
| 444 |
-
else Conv(in_channels, h_channels, 3, 1, act=act)
|
| 445 |
-
)
|
| 446 |
-
self.cb = (
|
| 447 |
-
nn.Sequential(*(Conv(in_channels, in_channels, 3, 1, act=act) for _ in range(repeat - 2)))
|
| 448 |
-
if repeat > 2
|
| 449 |
-
else nn.Identity()
|
| 450 |
-
)
|
| 451 |
-
self.cv2 = nn.Identity() if repeat == 1 else Conv(h_channels, in_channels, 3, 1, act=act)
|
| 452 |
-
|
| 453 |
-
def forward(self, x):
|
| 454 |
-
return x + self.cv2(self.cb(self.cv1(x)))
|
| 455 |
-
|
| 456 |
-
|
| 457 |
-
class ResRepConvBlock(nn.Module):
|
| 458 |
-
# ResConvBlock
|
| 459 |
-
def __init__(self, in_channels, repeat=1, act=nn.ReLU(), ratio=1.0):
|
| 460 |
-
|
| 461 |
-
super().__init__()
|
| 462 |
-
|
| 463 |
-
h_channels = int(in_channels * ratio)
|
| 464 |
-
self.cv1 = (
|
| 465 |
-
Conv(in_channels, in_channels, 3, 1, act=act)
|
| 466 |
-
if repeat == 1
|
| 467 |
-
else RepConv(in_channels, h_channels, 3, 1, act=act)
|
| 468 |
-
)
|
| 469 |
-
self.cb = (
|
| 470 |
-
nn.Sequential(*(RepConv(in_channels, in_channels, 3, 1, act=act) for _ in range(repeat - 2)))
|
| 471 |
-
if repeat > 2
|
| 472 |
-
else nn.Identity()
|
| 473 |
-
)
|
| 474 |
-
self.cv2 = nn.Identity() if repeat == 1 else Conv(h_channels, in_channels, 3, 1, act=act)
|
| 475 |
-
|
| 476 |
-
def forward(self, x):
|
| 477 |
-
return x + self.cv2(self.cb(self.cv1(x)))
|
| 478 |
-
|
| 479 |
-
|
| 480 |
-
# Darknet
|
| 481 |
-
class Dark(nn.Module):
|
| 482 |
-
# DarkNet bottleneck
|
| 483 |
-
def __init__(self, in_channels, out_channels, groups=1, act=nn.ReLU(), ratio=0.5):
|
| 484 |
-
|
| 485 |
-
super().__init__()
|
| 486 |
-
|
| 487 |
-
h_channels = int(in_channels * ratio)
|
| 488 |
-
self.cv1 = Conv(in_channels, h_channels, 1, 1, act=act)
|
| 489 |
-
self.cv2 = Conv(h_channels, out_channels, 3, 1, groups=groups, act=act)
|
| 490 |
-
|
| 491 |
-
def forward(self, x):
|
| 492 |
-
return x + self.cv2(self.cv1(x))
|
| 493 |
-
|
| 494 |
-
|
| 495 |
-
class RepDark(nn.Module):
|
| 496 |
-
# RepDarkNet bottleneck
|
| 497 |
-
def __init__(self, in_channels, out_channels, groups=1, act=nn.ReLU(), ratio=0.5):
|
| 498 |
-
|
| 499 |
-
super().__init__()
|
| 500 |
-
|
| 501 |
-
h_channels = int(in_channels * ratio)
|
| 502 |
-
self.cv1 = RepConv(in_channels, h_channels, 3, 1, groups=groups, act=act)
|
| 503 |
-
self.cv2 = Conv(h_channels, out_channels, 1, 1, act=act)
|
| 504 |
-
|
| 505 |
-
def forward(self, x):
|
| 506 |
-
return x + self.cv2(self.cv1(x))
|
| 507 |
-
|
| 508 |
-
|
| 509 |
-
# CSPNet
|
| 510 |
-
class CSP(nn.Module):
|
| 511 |
-
# CSPNet
|
| 512 |
-
def __init__(self, in_channels, out_channels, repeat=1, cb_repeat=2, act=nn.ReLU()):
|
| 513 |
-
super().__init__()
|
| 514 |
-
h_channels = in_channels // 2
|
| 515 |
-
self.cv1 = Conv(in_channels, in_channels, 1, 1, act=act)
|
| 516 |
-
self.cb = nn.Sequential(*(ResConvBlock(h_channels, act=act, repeat=cb_repeat) for _ in range(repeat)))
|
| 517 |
-
self.cv2 = Conv(2 * h_channels, out_channels, 1, 1, act=act)
|
| 518 |
-
|
| 519 |
-
def forward(self, x):
|
| 520 |
-
x = list(self.cv1(x).chunk(2, 1))
|
| 521 |
-
x = torch.cat((self.cb(x[0]), x[1]), 1)
|
| 522 |
-
x = self.cv2(x)
|
| 523 |
-
return x
|
| 524 |
-
|
| 525 |
-
|
| 526 |
-
class CSPDark(nn.Module):
|
| 527 |
-
# CSPNet
|
| 528 |
-
def __init__(self, in_channels, out_channels, repeat=1, groups=1, act=nn.ReLU(), ratio=1.0):
|
| 529 |
-
|
| 530 |
-
super().__init__()
|
| 531 |
-
|
| 532 |
-
h_channels = in_channels // 2
|
| 533 |
-
self.cv1 = Conv(in_channels, in_channels, 1, 1, act=act)
|
| 534 |
-
self.cb = nn.Sequential(
|
| 535 |
-
*(Dark(h_channels, h_channels, groups=groups, act=act, ratio=ratio) for _ in range(repeat))
|
| 536 |
-
)
|
| 537 |
-
self.cv2 = Conv(2 * h_channels, out_channels, 1, 1, act=act)
|
| 538 |
-
|
| 539 |
-
def forward(self, x):
|
| 540 |
-
|
| 541 |
-
y = list(self.cv1(x).chunk(2, 1))
|
| 542 |
-
|
| 543 |
-
return self.cv2(torch.cat((self.cb(y[0]), y[1]), 1))
|
| 544 |
-
|
| 545 |
-
|
| 546 |
-
class CSPELAN(nn.Module):
|
| 547 |
-
# ELAN
|
| 548 |
-
def __init__(self, in_channels, out_channels, med_channels, elan_repeat=2, cb_repeat=2, ratio=1.0):
|
| 549 |
-
|
| 550 |
-
super().__init__()
|
| 551 |
-
|
| 552 |
-
h_channels = med_channels // 2
|
| 553 |
-
self.cv1 = Conv(in_channels, med_channels, 1, 1)
|
| 554 |
-
self.cb = nn.ModuleList(CSP(h_channels, h_channels, repeat=cb_repeat, ratio=ratio) for _ in range(elan_repeat))
|
| 555 |
-
self.cv2 = Conv((2 + elan_repeat) * h_channels, out_channels, 1, 1)
|
| 556 |
-
|
| 557 |
-
def forward(self, x):
|
| 558 |
-
|
| 559 |
-
y = list(self.cv1(x).chunk(2, 1))
|
| 560 |
-
y.extend((m(y[-1])) for m in self.cb)
|
| 561 |
-
|
| 562 |
-
return self.cv2(torch.cat(y, 1))
|
| 563 |
-
|
| 564 |
-
|
| 565 |
-
class Concat(nn.Module):
|
| 566 |
-
def __init__(self, dim=1):
|
| 567 |
-
super(Concat, self).__init__()
|
| 568 |
-
self.dim = dim
|
| 569 |
-
|
| 570 |
-
def forward(self, x):
|
| 571 |
-
return torch.cat(x, self.dim)
|
| 572 |
-
|
| 573 |
-
|
| 574 |
-
# TODO: check if Mit
|
| 575 |
-
class SPPCSPConv(nn.Module):
|
| 576 |
-
# CSP https://github.com/WongKinYiu/CrossStagePartialNetworks
|
| 577 |
-
def __init__(self, in_channels, out_channels, n=1, shortcut=False, g=1, e=0.5, k=(5, 9, 13)):
|
| 578 |
-
super(SPPCSPConv, self).__init__()
|
| 579 |
-
c_ = int(2 * out_channels * e) # hidden channels
|
| 580 |
-
self.cv1 = Conv(in_channels, c_, 1)
|
| 581 |
-
self.cv2 = Conv(in_channels, c_, 1)
|
| 582 |
-
self.cv3 = Conv(c_, c_, 3)
|
| 583 |
-
self.cv4 = Conv(c_, c_, 1)
|
| 584 |
-
self.m = nn.ModuleList([Pool(method="max", kernel_size=x, stride=1, padding=x // 2) for x in k])
|
| 585 |
-
self.cv5 = Conv(4 * c_, c_, 1)
|
| 586 |
-
self.cv6 = Conv(c_, c_, 3)
|
| 587 |
-
self.cv7 = Conv(2 * c_, out_channels, 1)
|
| 588 |
-
|
| 589 |
-
def forward(self, x):
|
| 590 |
-
x1 = self.cv4(self.cv3(self.cv1(x)))
|
| 591 |
-
y1 = self.cv6(self.cv5(torch.cat([x1] + [m(x1) for m in self.m], 1)))
|
| 592 |
-
y2 = self.cv2(x)
|
| 593 |
-
return self.cv7(torch.cat((y1, y2), dim=1))
|
| 594 |
-
|
| 595 |
-
|
| 596 |
-
class ImplicitA(nn.Module):
|
| 597 |
-
"""
|
| 598 |
-
Implement YOLOR - implicit knowledge(Add), paper: https://arxiv.org/abs/2105.04206
|
| 599 |
-
"""
|
| 600 |
-
|
| 601 |
-
def __init__(self, channel: int, mean: float = 0.0, std: float = 0.02):
|
| 602 |
-
super().__init__()
|
| 603 |
-
self.channel = channel
|
| 604 |
-
self.mean = mean
|
| 605 |
-
self.std = std
|
| 606 |
-
|
| 607 |
-
self.implicit = nn.Parameter(torch.empty(1, channel, 1, 1))
|
| 608 |
-
nn.init.normal_(self.implicit, mean=mean, std=self.std)
|
| 609 |
-
|
| 610 |
-
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 611 |
-
return self.implicit + x
|
| 612 |
-
|
| 613 |
-
|
| 614 |
-
class ImplicitM(nn.Module):
|
| 615 |
-
"""
|
| 616 |
-
Implement YOLOR - implicit knowledge(multiply), paper: https://arxiv.org/abs/2105.04206
|
| 617 |
-
"""
|
| 618 |
-
|
| 619 |
-
def __init__(self, channel: int, mean: float = 1.0, std: float = 0.02):
|
| 620 |
-
super().__init__()
|
| 621 |
-
self.channel = channel
|
| 622 |
-
self.mean = mean
|
| 623 |
-
self.std = std
|
| 624 |
-
|
| 625 |
-
self.implicit = nn.Parameter(torch.empty(1, channel, 1, 1))
|
| 626 |
-
nn.init.normal_(self.implicit, mean=self.mean, std=self.std)
|
| 627 |
-
|
| 628 |
-
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 629 |
-
return self.implicit * x
|
| 630 |
-
|
| 631 |
-
|
| 632 |
-
class IDetect(nn.Module):
|
| 633 |
-
"""
|
| 634 |
-
#TODO: Add Detect class, change IDetect base class
|
| 635 |
-
"""
|
| 636 |
-
|
| 637 |
-
stride = None # strides computed during build
|
| 638 |
-
export = False # onnx export
|
| 639 |
-
end2end = False
|
| 640 |
-
include_nms = False
|
| 641 |
-
concat = False
|
| 642 |
-
|
| 643 |
-
def __init__(self, nc=80, anchors=(), ch=()): # detection layer
|
| 644 |
-
super(IDetect, self).__init__()
|
| 645 |
-
self.nc = nc # number of classes
|
| 646 |
-
self.no = nc + 5 # number of outputs per anchor
|
| 647 |
-
self.nl = len(anchors) # number of detection layers
|
| 648 |
-
self.na = len(anchors[0]) // 2 # number of anchors
|
| 649 |
-
self.grid = [torch.zeros(1)] * self.nl # init grid
|
| 650 |
-
a = torch.tensor(anchors).float().view(self.nl, -1, 2)
|
| 651 |
-
self.register_buffer("anchors", a) # shape(nl,na,2)
|
| 652 |
-
self.register_buffer("anchor_grid", a.clone().view(self.nl, 1, -1, 1, 1, 2)) # shape(nl,1,na,1,1,2)
|
| 653 |
-
self.m = nn.ModuleList(nn.Conv2d(x, self.no * self.na, 1) for x in ch) # output conv
|
| 654 |
-
|
| 655 |
-
self.ia = nn.ModuleList(ImplicitA(x) for x in ch)
|
| 656 |
-
self.im = nn.ModuleList(ImplicitM(self.no * self.na) for _ in ch)
|
| 657 |
-
|
| 658 |
-
def forward(self, x):
|
| 659 |
-
# x = x.copy() # for profiling
|
| 660 |
-
z = [] # inference output
|
| 661 |
-
self.training |= self.export
|
| 662 |
-
for i in range(self.nl):
|
| 663 |
-
x[i] = self.m[i](self.ia[i](x[i])) # conv
|
| 664 |
-
x[i] = self.im[i](x[i])
|
| 665 |
-
bs, _, ny, nx = x[i].shape # x(bs,255,20,20) to x(bs,3,20,20,85)
|
| 666 |
-
x[i] = x[i].view(bs, self.na, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous()
|
| 667 |
-
|
| 668 |
-
if not self.training: # inference
|
| 669 |
-
if self.grid[i].shape[2:4] != x[i].shape[2:4]:
|
| 670 |
-
self.grid[i] = self._make_grid(nx, ny).to(x[i].device)
|
| 671 |
-
|
| 672 |
-
y = x[i].sigmoid()
|
| 673 |
-
y[..., 0:2] = (y[..., 0:2] * 2.0 - 0.5 + self.grid[i]) * self.stride[i] # xy
|
| 674 |
-
y[..., 2:4] = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i] # wh
|
| 675 |
-
z.append(y.view(bs, -1, self.no))
|
| 676 |
-
|
| 677 |
-
return x if self.training else (torch.cat(z, 1), x)
|
|
|
|
| 47 |
return self.pool(x)
|
| 48 |
|
| 49 |
|
| 50 |
+
class Concat(nn.Module):
|
| 51 |
+
def __init__(self, dim=1):
|
| 52 |
+
super(Concat, self).__init__()
|
| 53 |
+
self.dim = dim
|
| 54 |
+
|
| 55 |
+
def forward(self, x):
|
| 56 |
+
return torch.cat(x, self.dim)
|
| 57 |
+
|
| 58 |
+
|
| 59 |
# ----------- Detection Class ----------- #
|
| 60 |
class Detection(nn.Module):
|
| 61 |
"""A single YOLO Detection head for detection models"""
|
|
|
|
| 360 |
res = [F.interpolate(x[pick_id], size=target_size, mode=self.mode) for pick_id, x in zip(self.idx, x_list)]
|
| 361 |
out = torch.stack(res + [target]).sum(dim=0)
|
| 362 |
return out
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|