Update app.py
Browse files
app.py
CHANGED
@@ -9,6 +9,9 @@ import onnxruntime, onnx
|
|
9 |
import matplotlib.pyplot as plt
|
10 |
import numpy as np
|
11 |
from matplotlib.backends.backend_agg import FigureCanvasAgg as FigureCanvas
|
|
|
|
|
|
|
12 |
|
13 |
@st.cache
|
14 |
def load_model():
|
@@ -119,4 +122,90 @@ if st.button('Сгенерировать потери'):
|
|
119 |
st.text('Аудио с потерями')
|
120 |
st.audio('lossy.wav')
|
121 |
st.text('Улучшенное аудио')
|
122 |
-
st.audio('enhanced.wav')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
import matplotlib.pyplot as plt
|
10 |
import numpy as np
|
11 |
from matplotlib.backends.backend_agg import FigureCanvasAgg as FigureCanvas
|
12 |
+
from torchmetrics.audio import ShortTimeObjectiveIntelligibility as STOI
|
13 |
+
from torchmetrics.audio.pesq import PerceptualEvaluationSpeechQuality as PESQ
|
14 |
+
import pandas as pd
|
15 |
|
16 |
@st.cache
|
17 |
def load_model():
|
|
|
122 |
st.text('Аудио с потерями')
|
123 |
st.audio('lossy.wav')
|
124 |
st.text('Улучшенное аудио')
|
125 |
+
st.audio('enhanced.wav')
|
126 |
+
data_clean, samplerate = torchaudio.load('target.wav')
|
127 |
+
|
128 |
+
data_lossy, samplerate = torchaudio.load('lossy.wav')
|
129 |
+
data_enhanced, samplerate = torchaudio.load('enhanced.wav')
|
130 |
+
min_len = min(data_clean.shape[1], data_lossy.shape[1])
|
131 |
+
data_clean = data_clean[:, :min_len]
|
132 |
+
data_lossy = data_lossy[:, :min_len]
|
133 |
+
data_enhanced = data_enhanced[:, :min_len]
|
134 |
+
|
135 |
+
|
136 |
+
stoi = STOI(48000)
|
137 |
+
stoi_orig = np.array(stoi(data_clean, data_clean))
|
138 |
+
stoi_lossy = np.array(stoi(data_clean, data_lossy))
|
139 |
+
stoi_enhanced = np.array(stoi(data_clean, data_enhanced))
|
140 |
+
stoi_mass=[stoi_orig, stoi_lossy, stoi_enhanced]
|
141 |
+
|
142 |
+
|
143 |
+
pesq = PESQ(16000, 'nb')
|
144 |
+
data_clean = data_clean.cpu().numpy()
|
145 |
+
data_lossy = data_lossy.detach().cpu().numpy()
|
146 |
+
data_enhanced = data_enhanced.cpu().numpy()
|
147 |
+
|
148 |
+
if samplerate != 16000:
|
149 |
+
data_lossy = librosa.resample(data_lossy, orig_sr=48000, target_sr=16000)
|
150 |
+
data_clean = librosa.resample(data_clean, orig_sr=48000, target_sr=16000)
|
151 |
+
data_enhanced = librosa.resample(data_enhanced, orig_sr=48000, target_sr=16000)
|
152 |
+
|
153 |
+
pesq_orig = np.array(pesq(torch.tensor(data_clean), torch.tensor(data_clean)))
|
154 |
+
pesq_lossy = np.array(pesq(torch.tensor(data_lossy), torch.tensor(data_clean)))
|
155 |
+
pesq_enhanced = np.array(pesq(torch.tensor(data_enhanced), torch.tensor(data_clean)))
|
156 |
+
|
157 |
+
psq_mas=[pesq_orig, pesq_lossy, pesq_enhanced]
|
158 |
+
|
159 |
+
|
160 |
+
|
161 |
+
df = pd.DataFrame(columns=['Audio', 'PESQ', 'STOI', 'PLCMOS', 'LSD'])
|
162 |
+
|
163 |
+
df['Audio'] = ['Clean', 'Lossy', 'Enhanced']
|
164 |
+
|
165 |
+
df['PESQ'] = psq_mas
|
166 |
+
|
167 |
+
df['STOI'] = stoi_mass
|
168 |
+
|
169 |
+
st.table(df)
|
170 |
+
|
171 |
+
|
172 |
+
|
173 |
+
|
174 |
+
|
175 |
+
|
176 |
+
|
177 |
+
|
178 |
+
|
179 |
+
|
180 |
+
|
181 |
+
|
182 |
+
|
183 |
+
|
184 |
+
|
185 |
+
|
186 |
+
|
187 |
+
|
188 |
+
|
189 |
+
|
190 |
+
|
191 |
+
|
192 |
+
|
193 |
+
|
194 |
+
|
195 |
+
|
196 |
+
|
197 |
+
|
198 |
+
|
199 |
+
|
200 |
+
|
201 |
+
|
202 |
+
|
203 |
+
|
204 |
+
|
205 |
+
|
206 |
+
|
207 |
+
|
208 |
+
|
209 |
+
|
210 |
+
|
211 |
+
|