Spaces:
Runtime error
Runtime error
Upload app.py
Browse files
app.py
ADDED
@@ -0,0 +1,174 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
|
3 |
+
from rf_models import RF_model
|
4 |
+
from sd_models import SD_model
|
5 |
+
|
6 |
+
import torch
|
7 |
+
from torchvision.transforms import Compose, Resize, CenterCrop, ToTensor, Normalize
|
8 |
+
import torch.nn.functional as F
|
9 |
+
|
10 |
+
from diffusers import StableDiffusionXLImg2ImgPipeline
|
11 |
+
import time
|
12 |
+
import copy
|
13 |
+
import numpy as np
|
14 |
+
|
15 |
+
pipe = StableDiffusionXLImg2ImgPipeline.from_pretrained(
|
16 |
+
"stabilityai/stable-diffusion-xl-refiner-1.0", torch_dtype=torch.float16, variant="fp16", use_safetensors=True
|
17 |
+
)
|
18 |
+
pipe = pipe.to("cuda")
|
19 |
+
|
20 |
+
global model
|
21 |
+
global base_model
|
22 |
+
global img
|
23 |
+
|
24 |
+
def set_model(model_id):
|
25 |
+
global model
|
26 |
+
if model_id == "InstaFlow-0.9B":
|
27 |
+
model = RF_model("./instaflow_09b.pt")
|
28 |
+
elif model_id == "InstaFlow-1.7B":
|
29 |
+
model = RF_model("./instaflow_17b.pt")
|
30 |
+
else:
|
31 |
+
raise NotImplementedError
|
32 |
+
print('Finished Loading Model!')
|
33 |
+
|
34 |
+
def set_base_model(model_id):
|
35 |
+
global base_model
|
36 |
+
if model_id == "runwayml/stable-diffusion-v1-5":
|
37 |
+
base_model = SD_model("runwayml/stable-diffusion-v1-5")
|
38 |
+
else:
|
39 |
+
raise NotImplementedError
|
40 |
+
print('Finished Loading Base Model!')
|
41 |
+
|
42 |
+
def set_new_latent_and_generate_new_image(seed, prompt, num_inference_steps=1, guidance_scale=0.0):
|
43 |
+
print('Generate with input seed')
|
44 |
+
global model
|
45 |
+
global img
|
46 |
+
negative_prompt=""
|
47 |
+
seed = int(seed)
|
48 |
+
num_inference_steps = int(num_inference_steps)
|
49 |
+
guidance_scale = float(guidance_scale)
|
50 |
+
print(seed, num_inference_steps, guidance_scale)
|
51 |
+
|
52 |
+
t_s = time.time()
|
53 |
+
new_image = model.set_new_latent_and_generate_new_image(int(seed), prompt, negative_prompt, int(num_inference_steps), guidance_scale)
|
54 |
+
inf_time = time.time() - t_s
|
55 |
+
|
56 |
+
img = copy.copy(new_image[0])
|
57 |
+
|
58 |
+
return new_image[0], inf_time
|
59 |
+
|
60 |
+
def set_new_latent_and_generate_new_image_with_base_model(seed, prompt, num_inference_steps=1, guidance_scale=0.0):
|
61 |
+
print('Generate with input seed')
|
62 |
+
global base_model
|
63 |
+
negative_prompt=""
|
64 |
+
seed = int(seed)
|
65 |
+
num_inference_steps = int(num_inference_steps)
|
66 |
+
guidance_scale = float(guidance_scale)
|
67 |
+
print(seed, num_inference_steps, guidance_scale)
|
68 |
+
|
69 |
+
t_s = time.time()
|
70 |
+
new_image = base_model.set_new_latent_and_generate_new_image(int(seed), prompt, negative_prompt, int(num_inference_steps), guidance_scale)
|
71 |
+
inf_time = time.time() - t_s
|
72 |
+
|
73 |
+
return new_image[0], inf_time
|
74 |
+
|
75 |
+
|
76 |
+
def set_new_latent_and_generate_new_image_and_random_seed(seed, prompt, negative_prompt="", num_inference_steps=1, guidance_scale=0.0):
|
77 |
+
print('Generate with a random seed')
|
78 |
+
global model
|
79 |
+
global img
|
80 |
+
seed = np.random.randint(0, 2**32)
|
81 |
+
num_inference_steps = int(num_inference_steps)
|
82 |
+
guidance_scale = float(guidance_scale)
|
83 |
+
print(seed, num_inference_steps, guidance_scale)
|
84 |
+
|
85 |
+
t_s = time.time()
|
86 |
+
new_image = model.set_new_latent_and_generate_new_image(int(seed), prompt, negative_prompt, int(num_inference_steps), guidance_scale)
|
87 |
+
inf_time = time.time() - t_s
|
88 |
+
|
89 |
+
img = copy.copy(new_image[0])
|
90 |
+
|
91 |
+
return new_image[0], seed, inf_time
|
92 |
+
|
93 |
+
|
94 |
+
def refine_image_512(prompt):
|
95 |
+
print('Refine with SDXL-Refiner (512)')
|
96 |
+
global img
|
97 |
+
|
98 |
+
t_s = time.time()
|
99 |
+
img = torch.tensor(img).unsqueeze(0).permute(0, 3, 1, 2)
|
100 |
+
img = img.permute(0, 2, 3, 1).squeeze(0).cpu().numpy()
|
101 |
+
new_image = pipe(prompt, image=img).images[0]
|
102 |
+
print('time consumption:', time.time() - t_s)
|
103 |
+
new_image = np.array(new_image) * 1.0 / 255.
|
104 |
+
|
105 |
+
img = new_image
|
106 |
+
|
107 |
+
return new_image
|
108 |
+
|
109 |
+
def refine_image_1024(prompt):
|
110 |
+
print('Refine with SDXL-Refiner (1024)')
|
111 |
+
global img
|
112 |
+
|
113 |
+
t_s = time.time()
|
114 |
+
img = torch.tensor(img).unsqueeze(0).permute(0, 3, 1, 2)
|
115 |
+
img = torch.nn.functional.interpolate(img, size=1024, mode='bilinear')
|
116 |
+
img = img.permute(0, 2, 3, 1).squeeze(0).cpu().numpy()
|
117 |
+
new_image = pipe(prompt, image=img).images[0]
|
118 |
+
print('time consumption:', time.time() - t_s)
|
119 |
+
new_image = np.array(new_image) * 1.0 / 255.
|
120 |
+
|
121 |
+
img = new_image
|
122 |
+
|
123 |
+
return new_image
|
124 |
+
|
125 |
+
set_model('InstaFlow-0.9B')
|
126 |
+
set_base_model("runwayml/stable-diffusion-v1-5")
|
127 |
+
|
128 |
+
with gr.Blocks() as gradio_gui:
|
129 |
+
gr.Markdown(
|
130 |
+
"""
|
131 |
+
# InstaFlow! One-Step Stable Diffusion with Rectified Flow
|
132 |
+
## This Huggingface Space provides a demo of one-step InstaFlow-0.9B and measures the inference time.
|
133 |
+
## For fair comparison, Stable Difusion 1.5 is shown in parallel.
|
134 |
+
##
|
135 |
+
""")
|
136 |
+
gr.Markdown("Set Input Seed and Text Prompts Here")
|
137 |
+
with gr.Row():
|
138 |
+
with gr.Column(scale=0.4):
|
139 |
+
seed_input = gr.Textbox(value='101098274', label="Random Seed")
|
140 |
+
with gr.Column(scale=0.4):
|
141 |
+
prompt_input = gr.Textbox(value='A high-resolution photograph of a waterfall in autumn; muted tone', label="Prompt")
|
142 |
+
|
143 |
+
with gr.Row():
|
144 |
+
with gr.Column(scale=0.4):
|
145 |
+
with gr.Group():
|
146 |
+
gr.Markdown("Generation from InstaFlow-0.9B")
|
147 |
+
im = gr.Image()
|
148 |
+
|
149 |
+
gr.Markdown("Model ID: One-Step InstaFlow-0.9B")
|
150 |
+
inference_time_output = gr.Textbox(value='0.0', label='Inference Time with One-Step Model (Second)')
|
151 |
+
num_inference_steps = gr.Textbox(value='1', label="Number of Inference Steps (can only be 1)")
|
152 |
+
guidance_scale = gr.Textbox(value='0.0', label="Guidance Scale for InstaFlow (can only be 0.0)")
|
153 |
+
|
154 |
+
new_image_button = gr.Button(value="One-Step Generation with InstaFlow and the Input Seed")
|
155 |
+
new_image_button.click(set_new_latent_and_generate_new_image, inputs=[seed_input, prompt_input, num_inference_steps, guidance_scale], outputs=[im, inference_time_output])
|
156 |
+
|
157 |
+
refine_button_512 = gr.Button(value="Refine One-Step Generation with SDXL Refiner (Resolution: 512)")
|
158 |
+
refine_button_512.click(refine_image_512, inputs=[prompt_input], outputs=[im])
|
159 |
+
|
160 |
+
with gr.Column(scale=0.4):
|
161 |
+
with gr.Group():
|
162 |
+
gr.Markdown("Generation from Stable Diffusion 1.5")
|
163 |
+
im_base = gr.Image()
|
164 |
+
|
165 |
+
gr.Markdown("Model ID: Multi-Step Stable Diffusion 1.5")
|
166 |
+
base_model_inference_time_output = gr.Textbox(value='0.0', label='Inference Time with Multi-Step Stable Diffusion (Second)')
|
167 |
+
|
168 |
+
base_num_inference_steps = gr.Textbox(value='25', label="Number of Inference Steps for Stable Diffusion")
|
169 |
+
base_guidance_scale = gr.Textbox(value='5.0', label="Guidance Scale for Stable Diffusion")
|
170 |
+
|
171 |
+
base_new_image_button = gr.Button(value="Multi-Step Generation with Stable Diffusion and the Input Seed")
|
172 |
+
base_new_image_button.click(set_new_latent_and_generate_new_image_with_base_model, inputs=[seed_input, prompt_input, base_num_inference_steps, base_guidance_scale], outputs=[im_base, base_model_inference_time_output])
|
173 |
+
|
174 |
+
gradio_gui.launch()
|