Spaces:
Runtime error
Runtime error
Update app.py
Browse filesreplace with the new lora version huggingface demo
app.py
CHANGED
@@ -1,9 +1,132 @@
|
|
1 |
-
import
|
2 |
-
import subprocess
|
3 |
|
4 |
-
from
|
5 |
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
|
|
2 |
|
3 |
+
from pipeline_rf import RectifiedFlowPipeline
|
4 |
|
5 |
+
import torch
|
6 |
+
from torchvision.transforms import Compose, Resize, CenterCrop, ToTensor, Normalize
|
7 |
+
import torch.nn.functional as F
|
8 |
+
|
9 |
+
from diffusers import StableDiffusionXLImg2ImgPipeline
|
10 |
+
import time
|
11 |
+
import copy
|
12 |
+
import numpy as np
|
13 |
+
|
14 |
+
def merge_dW_to_unet(pipe, dW_dict, alpha=1.0):
|
15 |
+
_tmp_sd = pipe.unet.state_dict()
|
16 |
+
for key in dW_dict.keys():
|
17 |
+
_tmp_sd[key] += dW_dict[key] * alpha
|
18 |
+
pipe.unet.load_state_dict(_tmp_sd, strict=False)
|
19 |
+
return pipe
|
20 |
+
|
21 |
+
def get_dW_and_merge(pipe_rf, lora_path='Lykon/dreamshaper-7', save_dW = False, base_sd='runwayml/stable-diffusion-v1-5', alpha=1.0):
|
22 |
+
# get weights of base sd models
|
23 |
+
from diffusers import DiffusionPipeline
|
24 |
+
_pipe = DiffusionPipeline.from_pretrained(
|
25 |
+
base_sd,
|
26 |
+
torch_dtype=torch.float16,
|
27 |
+
safety_checker = None,
|
28 |
+
)
|
29 |
+
sd_state_dict = _pipe.unet.state_dict()
|
30 |
+
|
31 |
+
# get weights of the customized sd models, e.g., the aniverse downloaded from civitai.com
|
32 |
+
_pipe = DiffusionPipeline.from_pretrained(
|
33 |
+
lora_path,
|
34 |
+
torch_dtype=torch.float16,
|
35 |
+
safety_checker = None,
|
36 |
+
)
|
37 |
+
lora_unet_checkpoint = _pipe.unet.state_dict()
|
38 |
+
|
39 |
+
# get the dW
|
40 |
+
dW_dict = {}
|
41 |
+
for key in lora_unet_checkpoint.keys():
|
42 |
+
dW_dict[key] = lora_unet_checkpoint[key] - sd_state_dict[key]
|
43 |
+
|
44 |
+
# return and save dW dict
|
45 |
+
if save_dW:
|
46 |
+
save_name = lora_path.split('/')[-1] + '_dW.pt'
|
47 |
+
torch.save(dW_dict, save_name)
|
48 |
+
|
49 |
+
pipe_rf = merge_dW_to_unet(pipe_rf, dW_dict=dW_dict, alpha=alpha)
|
50 |
+
pipe_rf.vae = _pipe.vae
|
51 |
+
pipe_rf.text_encoder = _pipe.text_encoder
|
52 |
+
|
53 |
+
return dW_dict
|
54 |
+
|
55 |
+
|
56 |
+
|
57 |
+
pipe = StableDiffusionXLImg2ImgPipeline.from_pretrained(
|
58 |
+
"stabilityai/stable-diffusion-xl-refiner-1.0", torch_dtype=torch.float16, variant="fp16", use_safetensors=True
|
59 |
+
)
|
60 |
+
pipe = pipe.to("cuda")
|
61 |
+
|
62 |
+
insta_pipe = RectifiedFlowPipeline.from_pretrained("XCLiu/instaflow_0_9B_from_sd_1_5", torch_dtype=torch.float16)
|
63 |
+
dW_dict = get_dW_and_merge(insta_pipe, lora_path="Lykon/dreamshaper-7", save_dW=False, alpha=1.0)
|
64 |
+
insta_pipe.to("cuda")
|
65 |
+
|
66 |
+
global img
|
67 |
+
|
68 |
+
@torch.no_grad()
|
69 |
+
def set_new_latent_and_generate_new_image(seed, prompt, randomize_seed, num_inference_steps=1, guidance_scale=0.0):
|
70 |
+
print('Generate with input seed')
|
71 |
+
global img
|
72 |
+
negative_prompt=""
|
73 |
+
if randomize_seed:
|
74 |
+
seed = np.random.randint(0, 2**32)
|
75 |
+
seed = int(seed)
|
76 |
+
num_inference_steps = int(num_inference_steps)
|
77 |
+
guidance_scale = float(guidance_scale)
|
78 |
+
print(seed, num_inference_steps, guidance_scale)
|
79 |
+
|
80 |
+
t_s = time.time()
|
81 |
+
generator = torch.manual_seed(seed)
|
82 |
+
images = insta_pipe(prompt=prompt, num_inference_steps=1, guidance_scale=0.0, generator=generator).images
|
83 |
+
inf_time = time.time() - t_s
|
84 |
+
|
85 |
+
img = copy.copy(np.array(images[0]))
|
86 |
+
|
87 |
+
return images[0], inf_time, seed
|
88 |
+
|
89 |
+
@torch.no_grad()
|
90 |
+
def refine_image_512(prompt):
|
91 |
+
print('Refine with SDXL-Refiner (512)')
|
92 |
+
global img
|
93 |
+
|
94 |
+
t_s = time.time()
|
95 |
+
img = torch.tensor(img).unsqueeze(0).permute(0, 3, 1, 2) / 255.0
|
96 |
+
img = img.permute(0, 2, 3, 1).squeeze(0).cpu().numpy()
|
97 |
+
new_image = pipe(prompt, image=img).images[0]
|
98 |
+
print('time consumption:', time.time() - t_s)
|
99 |
+
new_image = np.array(new_image) * 1.0 / 255.
|
100 |
+
|
101 |
+
img = copy.copy(new_image)
|
102 |
+
|
103 |
+
return new_image
|
104 |
+
|
105 |
+
|
106 |
+
with gr.Blocks() as gradio_gui:
|
107 |
+
gr.Markdown(
|
108 |
+
"""
|
109 |
+
# InstaFlow! One-Step Stable Diffusion with Rectified Flow [[paper]](https://arxiv.org/abs/2309.06380)
|
110 |
+
## This is a demo of one-step InstaFlow-0.9B with [dreamshaper-7](https://huggingface.co/Lykon/dreamshaper-7) (a LoRA that improves image quality) and measures the inference time.
|
111 |
+
""")
|
112 |
+
|
113 |
+
with gr.Row():
|
114 |
+
with gr.Column(scale=0.4):
|
115 |
+
with gr.Group():
|
116 |
+
gr.Markdown("Generation from InstaFlow-0.9B")
|
117 |
+
im = gr.Image()
|
118 |
+
|
119 |
+
with gr.Column(scale=0.4):
|
120 |
+
inference_time_output = gr.Textbox(value='0.0', label='Inference Time with One-Step InstaFlow (Second)')
|
121 |
+
seed_input = gr.Textbox(value='101098274', label="Random Seed")
|
122 |
+
randomize_seed = gr.Checkbox(label="Randomly Sample a Random Seed", value=True)
|
123 |
+
prompt_input = gr.Textbox(value='A high-resolution photograph of a waterfall in autumn; muted tone', label="Prompt")
|
124 |
+
|
125 |
+
new_image_button = gr.Button(value="One-Step Generation with InstaFlow and the Random Seed")
|
126 |
+
new_image_button.click(set_new_latent_and_generate_new_image, inputs=[seed_input, prompt_input, randomize_seed], outputs=[im, inference_time_output, seed_input])
|
127 |
+
|
128 |
+
refine_button_512 = gr.Button(value="Refine One-Step Generation with SDXL Refiner (Resolution: 512)")
|
129 |
+
refine_button_512.click(refine_image_512, inputs=[prompt_input], outputs=[im])
|
130 |
+
|
131 |
+
|
132 |
+
gradio_gui.launch()
|