Spaces:
Running
on
Zero
Running
on
Zero
import PIL | |
import torch | |
from .prompts import GetPromptList | |
ORG_PART_ORDER = ['back', 'beak', 'belly', 'breast', 'crown', 'forehead', 'eyes', 'legs', 'wings', 'nape', 'tail', 'throat'] | |
ORDERED_PARTS = ['crown', 'forehead', 'nape', 'eyes', 'beak', 'throat', 'breast', 'belly', 'back', 'wings', 'legs', 'tail'] | |
def encode_descs_xclip(owlvit_det_processor: callable, model: callable, descs: list[str], device: str, max_batch_size: int = 512): | |
total_num_batches = len(descs) // max_batch_size + 1 | |
with torch.no_grad(): | |
text_embeds = [] | |
for batch_idx in range(total_num_batches): | |
query_descs = descs[batch_idx*max_batch_size:(batch_idx+1)*max_batch_size] | |
query_tokens = owlvit_det_processor(text=query_descs, padding="max_length", truncation=True, return_tensors="pt").to(device) | |
query_embeds = model.owlvit.get_text_features(**query_tokens) | |
text_embeds.append(query_embeds.cpu().float()) | |
text_embeds = torch.cat(text_embeds, dim=0) | |
return text_embeds.to(device) | |
# def encode_descs_clip(model: callable, descs: list[str], device: str, max_batch_size: int = 512): | |
# total_num_batches = len(descs) // max_batch_size + 1 | |
# with torch.no_grad(): | |
# text_embeds = [] | |
# for batch_idx in range(total_num_batches): | |
# desc = descs[batch_idx*max_batch_size:(batch_idx+1)*max_batch_size] | |
# query_tokens = clip.tokenize(desc).to(device) | |
# text_embeds.append(model.encode_text(query_tokens).cpu().float()) | |
# text_embeds = torch.cat(text_embeds, dim=0) | |
# text_embeds = torch.nn.functional.normalize(text_embeds, dim=-1) | |
# return text_embeds.to(device) | |
def xclip_pred(new_desc: dict, | |
new_part_mask: dict, | |
new_class: str, | |
org_desc: str, | |
image: PIL.Image, | |
model: callable, | |
owlvit_processor: callable, | |
device: str, | |
return_img_embeds: bool = False, | |
use_precompute_embeddings = True, | |
image_name: str = None,): | |
# reorder the new description and the mask | |
if new_class is not None: | |
new_desc_ = {k: new_desc[k] for k in ORG_PART_ORDER} | |
new_part_mask_ = {k: new_part_mask[k] for k in ORG_PART_ORDER} | |
desc_mask = list(new_part_mask_.values()) | |
else: | |
desc_mask = [1] * 12 | |
# replace the description if the new class is in the description, otherwise add a new class | |
getprompt = GetPromptList(org_desc) | |
if new_class not in getprompt.desc and new_class is not None: | |
getprompt.name2idx[new_class] = len(getprompt.name2idx) | |
if new_class is not None: | |
getprompt.desc[new_class] = list(new_desc_.values()) | |
idx2name = dict(zip(getprompt.name2idx.values(), getprompt.name2idx.keys())) | |
modified_class_idx = getprompt.name2idx[new_class] if new_class is not None else None | |
n_classes = len(getprompt.name2idx) | |
model.cls_head.num_classes = n_classes | |
descs, class_idxs, class_mapping, org_desc_mapper, class_list = getprompt('chatgpt-no-template', max_len=12, pad=True) | |
query_embeds = encode_descs_xclip(owlvit_processor, model, descs, device) | |
with torch.no_grad(): | |
image_input = owlvit_processor(images=image, return_tensors='pt').to(device) | |
# image_input['pixel_values'] = image_input['pixel_values'].squeeze(1) | |
part_embeds = owlvit_processor(text=[ORG_PART_ORDER], return_tensors="pt").to(device) | |
if return_img_embeds: | |
feature_map, _ = model.image_embedder(pixel_values = image_input['pixel_values']) | |
if use_precompute_embeddings: | |
image_embeds = torch.load(f'data/image_embeddings/{image_name}.pt').to(device) | |
pred_logits, part_logits, output_dict = model(image_embeds, part_embeds, query_embeds, None) | |
else: | |
pred_logits, part_logits, output_dict = model(image_input, part_embeds, query_embeds, None) | |
b, c, n = part_logits.shape | |
mask = torch.tensor(desc_mask, dtype=float).unsqueeze(0).unsqueeze(0).repeat(b, c, 1).to(device) | |
# overwrite the pred_logits | |
part_logits = part_logits * mask | |
pred_logits = torch.sum(part_logits, dim=-1) | |
pred_class_idx = torch.argmax(pred_logits, dim=-1).cpu() | |
pred_class_name = idx2name[pred_class_idx.item()] | |
softmax_scores = torch.softmax(pred_logits, dim=-1).cpu() | |
softmax_score_top1 = torch.topk(softmax_scores, k=1, dim=-1)[0].squeeze(-1).item() | |
part_scores = part_logits[0, pred_class_idx].cpu().squeeze(0) | |
part_scores_dict = dict(zip(ORG_PART_ORDER, part_scores.tolist())) | |
if modified_class_idx is not None: | |
modified_score = softmax_scores[0, modified_class_idx].item() | |
modified_part_scores = part_logits[0, modified_class_idx].cpu().squeeze(0) | |
modified_part_scores_dict = dict(zip(ORG_PART_ORDER, modified_part_scores.tolist())) | |
else: | |
modified_score = None | |
modified_part_scores_dict = None | |
modified_part_scores_dict = None | |
output_dict = {"pred_class": pred_class_name, | |
"pred_score": softmax_score_top1, | |
"pred_desc_scores": part_scores_dict, | |
"descriptions": getprompt.desc[pred_class_name], | |
"modified_class": new_class, | |
"modified_score": modified_score, | |
"modified_desc_scores": modified_part_scores_dict, | |
"modified_descriptions": getprompt.desc[new_class] if new_class is not None else None, | |
} | |
return output_dict if not return_img_embeds else (output_dict, feature_map) | |
# def sachit_pred(new_desc: list, | |
# new_class: str, | |
# org_desc: str, | |
# image: PIL.Image, | |
# model: callable, | |
# preprocess: callable, | |
# device: str, | |
# ): | |
# # replace the description if the new class is in the description, otherwise add a new class | |
# getprompt = GetPromptList(org_desc) | |
# if new_class not in getprompt.desc: | |
# getprompt.name2idx[new_class] = len(getprompt.name2idx) | |
# getprompt.desc[new_class] = new_desc | |
# idx2name = dict(zip(getprompt.name2idx.values(), getprompt.name2idx.keys())) | |
# modified_class_idx = getprompt.name2idx[new_class] | |
# descs, class_idxs, class_mapping, org_desc_mapper, class_list = getprompt('Sachit-descriptors', max_len=12, pad=True) | |
# text_embeds = encode_descs_clip(model, descs, device) | |
# with torch.no_grad(): | |
# image_embed = model.encode_image(preprocess(image).unsqueeze(0).to(device)) | |
# desc_mask = torch.tensor(class_idxs) | |
# desc_mask = torch.where(desc_mask == -1, 0, 1).unsqueeze(0).to(device) | |
# sim = torch.matmul(image_embed.float(), text_embeds.T) | |
# sim = (sim * desc_mask).view(1, -1, 12) | |
# pred_scores = torch.sum(sim, dim=-1) | |
# pred_class_idx = torch.argmax(pred_scores, dim=-1).cpu() | |
# pred_class = idx2name[pred_class_idx.item()] | |
# softmax_scores = torch.nn.functional.softmax(pred_scores, dim=-1).cpu() | |
# top1_score = torch.topk(softmax_scores, k=1, dim=-1)[0].squeeze(-1).item() | |
# modified_score = softmax_scores[0, modified_class_idx].item() | |
# pred_desc_scores = sim[0, pred_class_idx].cpu().squeeze(0) | |
# modified_class_scores = sim[0, modified_class_idx].cpu().squeeze(0) | |
# output_dict = {"pred_class": pred_class, | |
# "pred_score": top1_score, | |
# "pred_desc_scores": pred_desc_scores.tolist(), | |
# "descriptions": getprompt.desc[pred_class], | |
# "modified_class": new_class, | |
# "modified_score": modified_score, | |
# "modified_desc_scores": modified_class_scores.tolist(), | |
# "modified_descriptions": getprompt.desc[new_class], | |
# } | |
# return output_dict |