|
r""" Evaluates CHMNet with PCK """
|
|
|
|
import torch
|
|
|
|
|
|
class Evaluator:
|
|
r""" Computes evaluation metrics of PCK """
|
|
@classmethod
|
|
def initialize(cls, alpha):
|
|
cls.alpha = torch.tensor(alpha).unsqueeze(1)
|
|
|
|
@classmethod
|
|
def evaluate(cls, prd_kps, batch):
|
|
r""" Compute percentage of correct key-points (PCK) with multiple alpha {0.05, 0.1, 0.15 }"""
|
|
|
|
pcks = []
|
|
for idx, (pk, tk) in enumerate(zip(prd_kps, batch['trg_kps'])):
|
|
pckthres = batch['pckthres'][idx]
|
|
npt = batch['n_pts'][idx]
|
|
prd_kps = pk[:, :npt]
|
|
trg_kps = tk[:, :npt]
|
|
|
|
l2dist = (prd_kps - trg_kps).pow(2).sum(dim=0).pow(0.5).unsqueeze(0).repeat(len(cls.alpha), 1)
|
|
thres = pckthres.expand_as(l2dist).float() * cls.alpha
|
|
pck = torch.le(l2dist, thres).sum(dim=1) / float(npt)
|
|
if len(pck) == 1: pck = pck[0]
|
|
pcks.append(pck)
|
|
|
|
eval_result = {'pck': pcks}
|
|
|
|
return eval_result
|
|
|
|
|