UniPoll / app.py
X1AOX1A
update file
8fcfb91
import gc
import sys
import torch
import argparse
import gradio as gr
from typing import List, Tuple
from transformers import AutoConfig
from transformers.models.mt5.modeling_mt5 import MT5ForConditionalGeneration
from utils import T5PegasusTokenizer
try:
from loguru import logger as logging
logging.add(sys.stderr, filter="my_module")
except ImportError:
import logging
import time
class TimerDecorator:
def __init__(self, func) :
self.func = func
def __call__(self, *args, **kwargs) :
start_time = time.time()
result = self.func(*args, **kwargs)
end_time = time.time()
t = end_time - start_time
logging.info(f"Function `{self.func.__name__}` took {round(t, 2)} s to run.")
return result
@TimerDecorator
def load_model(model_path, device="cpu"):
logging.info(f"Loading model from {model_path}")
config = AutoConfig.from_pretrained(model_path)
tokenizer = T5PegasusTokenizer.from_pretrained(model_path)
model = MT5ForConditionalGeneration.from_pretrained(model_path, config=config)
if device != "cpu":
model.to(device)
logging.info("Done.")
return model, tokenizer
def wrap_prompt(
post, comments,
prompt="生成 <title> 和 <choices>: [SEP] {post} [SEP] {comments}"
):
if not comments or comments == "":
logging.info("No comments input, comments will be ignored.")
prompt = prompt.replace(" [SEP] {comments}", "")
prompt = prompt.format(post=post)
else:
prompt = prompt.format(post=post, comments=comments)
logging.info(f"Wrapped prompt: {prompt}")
return prompt
@TimerDecorator
def generate(query, model, tokenizer, num_beams=4, device="cpu"):
logging.info("Generating output...")
tokens = tokenizer(query, return_tensors="pt")["input_ids"]
if device != "cpu":
tokens = tokens.to(device)
output = model.generate(tokens, num_beams=num_beams, max_length=100)
output_text = tokenizer.batch_decode(output, skip_special_tokens=True)[0]
logging.info("Done.")
return output_text
def post_process(raw_output: str) -> Tuple[str, str]:
def same_title_choices(raw_output):
# return the same raw output as title and choices
# if no <title> or <choices> in raw_output
raw_output = raw_output.replace("<title>", "")
raw_output = raw_output.replace("<choices>", "")
return raw_output.strip(), [raw_output.strip()]
def split_choices(choices_str: str) -> List[str]:
choices = choices_str.split("<c>")
choices = [choice.strip() for choice in choices]
return choices
# extract title and choices from raw_output
# e.g. raw_output = "<title> 你 觉得 线 上 复试 公平 吗 <choices> 公平 <c> 不 公平"
if "<title>" in raw_output and "<choices>" in raw_output:
index1 = raw_output.index("<title>")
index2 = raw_output.index("<choices>")
if index1 > index2:
logging.debug(f"idx1>idx2, same title and choices will be used.\nraw_output: {raw_output}")
return same_title_choices(raw_output)
title = raw_output[index1+7: index2].strip() # "你 觉得 线 上 复试 公平 吗"
choices_str = raw_output[index2+9:].strip() # "公平 <c> 不 公平"
choices = split_choices(choices_str) # ["公平", "不 公平"]
else:
logging.debug(f"missing title/choices, same title and choices will be used.\nraw_output: {raw_output}")
title, choices = same_title_choices(raw_output)
def remove_blank(string):
return string.replace(" ", "")
title = remove_blank(title)
choices = [remove_blank(choice) for choice in choices]
return title, choices
def parse_args():
parser = argparse.ArgumentParser(description="Demo")
parser.add_argument("--model_path", type=str, default="./UniPoll-t5/best_model", help="path to the model.")
parser.add_argument("--device", type=str, default="cpu", help="specify the device to load the model, e.g. 'cpu', 'cuda:0'.")
parser.add_argument(
"--options",
nargs="+",
help="override some settings in the used config, the key-value pair "
"in xxx=yyy format will be merged into config file (deprecate), "
"change to --cfg-options instead.",
)
args = parser.parse_args()
return args
if __name__ == "__main__":
args = parse_args()
logging.info('Initializing Model...')
# prepare the model
model, tokenizer = load_model(args.model_path, args.device)
def submit(post, comments, num_beams):
try:
logging.info("Received post input: {}".format(post))
if comments:
logging.info("Received comments input: {}".format(comments))
query = wrap_prompt(post, comments)
raw_output = generate(
query, model, tokenizer, num_beams, args.device)
title, choices = post_process(raw_output) # post process
logging.info(f"Raw output: {raw_output}")
logging.info(f"Processed title: {title}")
logging.info(f"Processed choices: {choices}")
# return title, choices, raw_output
return title, choices
except Exception as e:
return "An error occurred: {}".format(str(e)), "An error occurred: {}".format(str(e))
finally:
gc.collect()
torch.cuda.empty_cache()
examples = [
["#哪吒,大鱼海棠重映#动画电影《哪吒之魔童降世》、《大鱼海棠》,以及雷佳音、佟丽娅主演的 《超时空同居》确定将重映。据最新数据显示,3月24日全国复工影院495家,复工率4.36%,单日票房2.7万元。", "我在人间贩卖黄昏,只为收集世间温柔,去见你。谢谢你的分享,来看看你。我的微博,随时恭候你的到..."],
["#线上复试是否能保障公平# 高考延期惹的祸,考研线上复试,那还能保证公平吗?", "这个世界上本来就没有绝对的公平。你可以说一个倒数第一考了第一,但考上了他也还是啥都不会。也可以说他会利用一切机会达到目的,反正结果就是人家考的好,你还找不出来证据。线上考试,平时考倒数的人进了年级前十。平时考试有水分,线上之后,那不就是在水里考?"],
["#断亲现象为何如此流行#?所谓“断亲”指的是当代年轻人懒于、疏于、不屑于跟亲戚交往、联系、互动,日常音信全无,哪怕在逢年过节期间,宁可独来独往,也不愿意走亲戚,甚至将此作为一种时尚生活方式来推崇。", ""]
]
description = """This is the demo of UniPoll. Please input post and comments. <div style='display:flex; gap: 0.25rem; '><a href='https://uni-poll.github.io'><img src='https://img.shields.io/badge/Project-Page-Green'></a><a href='https://github.com/X1AOX1A/UniPoll'><img src='https://img.shields.io/badge/Github-Code-blue'></a><a href='https://arxiv.org/abs/2306.06851'><img src='https://img.shields.io/badge/Paper-PDF-red'></a></div>
"""
demo = gr.Interface(
fn=submit,
inputs=[gr.Textbox(lines=1, label="Social Media Post", placeholder="Input post here..."),
gr.Textbox(lines=1, label="Social Media Comments (Optional)", placeholder="Input comments here..."),
gr.Number(value=4, label="Number of Beams", precision=0),
],
outputs=[gr.Textbox(lines=1, label="Generated Poll Question", placeholder="Generated poll question will be shown here"),
gr.Textbox(lines=1, label="Generated Poll Choices", placeholder="Generated poll choices will be shown here"),
], # question, choices
title="Demo of UniPoll",
description=description,
allow_flagging="never",
examples=examples,
)
demo.queue(max_size=10)
demo.launch()
# python app.py --model_path "./UniPoll-t5/best_model" --device "cpu"