|
import streamlit as st |
|
from dotenv import load_dotenv |
|
import pickle |
|
from PyPDF2 import PdfReader |
|
from streamlit_extras.add_vertical_space import add_vertical_space |
|
from langchain.text_splitter import RecursiveCharacterTextSplitter |
|
from langchain.embeddings.openai import OpenAIEmbeddings |
|
from langchain.vectorstores import FAISS |
|
from langchain.llms import OpenAI |
|
from langchain.chains.question_answering import load_qa_chain |
|
from langchain.callbacks import get_openai_callback |
|
import os |
|
|
|
|
|
with st.sidebar: |
|
st.title('π€π¬ LLM Chat App') |
|
st.markdown(''' |
|
## About |
|
This app is an LLM-powered chatbot built using: |
|
- [Streamlit](https://streamlit.io/) |
|
- [LangChain](https://python.langchain.com/) |
|
- [OpenAI](https://platform.openai.com/docs/models) LLM model |
|
|
|
''') |
|
add_vertical_space(5) |
|
st.write('Made with β€οΈ by [Prompt Engineer](https://youtube.com/@engineerprompt)') |
|
|
|
load_dotenv() |
|
|
|
def main(): |
|
st.header("Chat with PDF π¬") |
|
|
|
|
|
|
|
pdf = st.file_uploader("Upload your PDF", type='pdf') |
|
|
|
|
|
if pdf is not None: |
|
pdf_reader = PdfReader(pdf) |
|
|
|
text = "" |
|
for page in pdf_reader.pages: |
|
text += page.extract_text() |
|
|
|
text_splitter = RecursiveCharacterTextSplitter( |
|
chunk_size=1000, |
|
chunk_overlap=200, |
|
length_function=len |
|
) |
|
chunks = text_splitter.split_text(text=text) |
|
|
|
|
|
store_name = pdf.name[:-4] |
|
st.write(f'{store_name}') |
|
|
|
|
|
if os.path.exists(f"{store_name}.pkl"): |
|
with open(f"{store_name}.pkl", "rb") as f: |
|
VectorStore = pickle.load(f) |
|
|
|
else: |
|
embeddings = OpenAIEmbeddings() |
|
VectorStore = FAISS.from_texts(chunks, embedding=embeddings) |
|
with open(f"{store_name}.pkl", "wb") as f: |
|
pickle.dump(VectorStore, f) |
|
|
|
|
|
|
|
|
|
|
|
query = st.text_input("Ask questions about your PDF file:") |
|
|
|
|
|
if query: |
|
docs = VectorStore.similarity_search(query=query, k=3) |
|
|
|
llm = OpenAI() |
|
chain = load_qa_chain(llm=llm, chain_type="stuff") |
|
with get_openai_callback() as cb: |
|
response = chain.run(input_documents=docs, question=query) |
|
print(cb) |
|
st.write(response) |
|
|
|
if __name__ == '__main__': |
|
main() |