NSAQA / tempSegAndAllErrorsForAllFrames.py
laurenok24's picture
Update tempSegAndAllErrorsForAllFrames.py
cab00a7 verified
raw
history blame
10.3 kB
from microprograms.temporal_segmentation.entry import entry_microprogram_one_frame
from microprograms.temporal_segmentation.somersault import somersault_microprogram_one_frame
from microprograms.temporal_segmentation.twist import twist_microprogram_one_frame
from microprograms.temporal_segmentation.start_takeoff import takeoff_microprogram_one_frame
from microprograms.errors.distance_from_springboard_micro_program import board_end
from microprograms.errors.splash_micro_program import get_splash_from_one_frame
from microprograms.errors.distance_from_springboard_micro_program import calculate_distance_from_springboard_for_one_frame
from microprograms.errors.distance_from_springboard_micro_program import calculate_distance_from_platform_for_one_frame
from microprograms.errors.angles_micro_programs import applyFeetApartError
from microprograms.errors.angles_micro_programs import applyPositionTightnessError
from models.detectron2.platform_detector_setup import get_platform_detector
from models.pose_estimator.pose_estimator_model_setup import get_pose_estimation
from models.detectron2.diver_detector_setup import get_diver_detector
from models.pose_estimator.pose_estimator_model_setup import get_pose_model
from models.detectron2.splash_detector_setup import get_splash_detector
from somersault_counter import som_counter, twist_counter
from microprograms.errors.over_rotation import over_rotation
from temporal_segmentation import detect_on_board
import pickle
import os
import math
import numpy as np
import cv2
def getDiveInfo_from_diveNum(diveNum):
handstand = (diveNum[0] == '6')
expected_som = int(diveNum[2])
if len(diveNum) == 5:
expected_twists = int(diveNum[3])
else:
expected_twists = 0
if diveNum[0] == '1' or diveNum[0] == '3' or diveNum[:2] == '51' or diveNum[:2] == '53' or diveNum[:2] == '61' or diveNum[:2] == '63':
back_facing = False
else:
back_facing = True
if diveNum[0] == '1' or diveNum[:2] == '51' or diveNum[:2] == '61':
expected_direction = 'front'
elif diveNum[0] == '2' or diveNum[:2] == '52' or diveNum[:2] == '62':
expected_direction = 'back'
elif diveNum[0] == '3' or diveNum[:2] == '53' or diveNum[:2] == '63':
expected_direction = 'reverse'
elif diveNum[0] == '4':
expected_direction = 'inward'
if diveNum[-1] == 'b':
position = 'pike'
elif diveNum[-1] == 'c':
position = 'tuck'
else:
position = 'free'
return handstand, expected_som, expected_twists, back_facing, expected_direction, position
def getAllErrorsAndSegmentation(first_folder, second_folder, diveNum, board_side=None, platform_detector=None, splash_detector=None, diver_detector=None, pose_model=None):
handstand, expected_som, expected_twists, back_facing, expected_direction, position = getDiveInfo_from_diveNum(diveNum)
# first_folder = input("what is the first folder? Ex: 01, FINAWorldChampionships2019_Women10m_final_r1, etc. ")
# second_folder = input("what is the second folder? (dive within the first folder)")
dive_data = {}
takeoff = []
twist = []
som = []
entry = []
distance_from_board = []
position_tightness = []
feet_apart = []
over_under_rotation = []
splash = []
pose_preds = []
diver_boxes = []
above_boards = []
on_boards = []
som_counts = []
twist_counts = []
board_end_coords = []
plat_outputs = []
splash_pred_masks = []
above_board = True
on_board = True
if platform_detector is None:
platform_detector = get_platform_detector()
if splash_detector is None:
splash_detector = get_splash_detector()
if diver_detector is None:
diver_detector = get_diver_detector()
if pose_model is None:
pose_model = get_pose_model()
key = (first_folder, int(second_folder))
dive_folder_num = "{}_{}".format(first_folder, second_folder)
directory = './FineDiving/datasets/FINADiving_MTL_256s/{}/{}/'.format(first_folder, second_folder)
file_names = os.listdir(directory)
# with open('./output/joint_plots/{}/pose_preds.pkl'.format(dive_folder_num), 'rb') as pickle_file:
# pose_preds = pickle.load(pickle_file)
j = 0
prev_pred = None
som_prev_pred = None
half_som_count=0
petal_count = 0
in_petal = False
for i in range(len(file_names)):
# pose_pred = None
filepath = directory + file_names[i]
# print("filepath:", filepath)
if file_names[i][-4:] != ".jpg":
continue
diver_box, pose_pred = get_pose_estimation(filepath, diver_detector=diver_detector, pose_model=pose_model)
# pose_pred = data[key]['pose_pred'][i]
diver_boxes.append(diver_box)
pose_preds.append(pose_pred)
# if j < len(pose_preds):
# print("filepath has pose_pred:", filepath)
# pose_pred = pose_preds[j]
# j += 1
calculated_half_som_count, skip = som_counter(pose_pred, prev_pose_pred=som_prev_pred, half_som_count=half_som_count, handstand=handstand)
if not skip:
som_prev_pred = pose_pred
calculated_petal_count, calculated_in_petal = twist_counter(pose_pred, prev_pose_pred=prev_pred, in_petal=in_petal, petal_count=petal_count)
im = cv2.imread(filepath)
plat_output = platform_detector(im)
plat_outputs.append(plat_output)
board_end_coord = board_end(plat_output, board_side=board_side)
board_end_coords.append(board_end_coord)
# if board_end_coord is None:
# print("NO BOARD NONE CRYING")
if above_board and not on_board and board_end_coord is not None and pose_pred is not None and np.array(pose_pred)[0][2][1] > int(board_end_coord[1]):
above_board=False
if on_board and detect_on_board(board_end_coord, board_side, pose_pred, handstand) is not None and not detect_on_board(board_end_coord, board_side, pose_pred, handstand):
on_board = False
if above_board:
above_boards.append(1)
else:
above_boards.append(0)
if on_board:
on_boards.append(1)
else:
on_boards.append(0)
calculated_takeoff = takeoff_microprogram_one_frame(filepath, above_board=above_board, on_board=on_board, pose_pred=pose_pred)
calculated_twist = twist_microprogram_one_frame(filepath, on_board=on_board, pose_pred=pose_pred, expected_twists=expected_twists, petal_count=petal_count, expected_som=expected_som, half_som_count=half_som_count, diver_detector=diver_detector, pose_model=pose_model)
calculated_som = somersault_microprogram_one_frame(filepath, pose_pred=pose_pred, on_board=on_board, expected_som=expected_som, half_som_count=half_som_count, expected_twists=expected_twists, petal_count=petal_count, diver_detector=diver_detector, pose_model=pose_model)
calculated_entry = entry_microprogram_one_frame(filepath, above_board=above_board, on_board=on_board, pose_pred=pose_pred, expected_twists=expected_twists, petal_count=petal_count, expected_som=expected_som, half_som_count=half_som_count, splash_detector=splash_detector, visualize=False, dive_folder_num=dive_folder_num)
if calculated_som == 1:
half_som_count = calculated_half_som_count
elif calculated_twist == 1:
half_som_count = calculated_half_som_count
petal_count = calculated_petal_count
in_petal = calculated_in_petal
# distance from board
dist = calculate_distance_from_platform_for_one_frame(filepath, visualize=False, pose_pred=pose_pred, diver_detector=diver_detector, pose_model=pose_model, board_end_coord=board_end_coord, platform_detector=platform_detector) # saves photo to ./output/data/distance_from_board/
distance_from_board.append(dist)
position_tightness.append(applyPositionTightnessError(filepath, pose_pred=pose_pred, diver_detector=diver_detector, pose_model=pose_model))
feet_apart.append(applyFeetApartError(filepath, pose_pred=pose_pred, diver_detector=diver_detector, pose_model=pose_model))
over_under_rotation.append(over_rotation(filepath, pose_pred=pose_pred, diver_detector=diver_detector, pose_model=pose_model))
splash_area, splash_pred_mask = get_splash_from_one_frame(filepath, predictor=splash_detector, visualize=False)
splash.append(splash_area)
splash_pred_masks.append(splash_pred_mask)
takeoff.append(calculated_takeoff)
twist.append(calculated_twist)
som.append(calculated_som)
entry.append(calculated_entry)
som_counts.append(half_som_count)
twist_counts.append(petal_count)
prev_pred = pose_pred
dive_data['pose_pred'] = pose_preds
dive_data['takeoff'] = takeoff
dive_data['twist'] = twist
dive_data['som'] = som
dive_data['entry'] = entry
dive_data['distance_from_board'] = distance_from_board
dive_data['position_tightness'] = position_tightness
dive_data['feet_apart'] = feet_apart
dive_data['over_under_rotation'] = over_under_rotation
dive_data['splash'] = splash
dive_data['above_boards'] = above_boards
dive_data['on_boards'] = on_boards
dive_data['som_counts'] = som_counts
dive_data['twist_counts'] = twist_counts
dive_data['board_end_coords'] = board_end_coords
dive_data['diver_boxes'] = diver_boxes
dive_data['splash_pred_masks'] = splash_pred_masks
dive_data['plat_outputs'] = plat_outputs
dive_data['board_side'] = board_side
dive_data['is_handstand'] = handstand
dive_data['direction'] = expected_direction
print("takeoff", takeoff)
print("twist", twist)
print("som", som)
print("entry", entry)
print("distance_from_board", distance_from_board)
print("position_tightness", position_tightness)
print("feet_apart", feet_apart)
print("over_under_rotation", over_under_rotation)
print("splash", splash)
print("above_boards", above_boards)
print("on_boards", on_boards)
print("som_counts", som_counts)
print("twist_counts", twist_counts)
print("board_end_coords", board_end_coords)
print("diver_boxes", diver_boxes)
return dive_data