|
|
|
|
|
|
|
|
|
|
|
|
|
from __future__ import absolute_import |
|
from __future__ import division |
|
from __future__ import print_function |
|
|
|
import os |
|
import logging |
|
|
|
import torch |
|
import torch.nn as nn |
|
|
|
|
|
BN_MOMENTUM = 0.1 |
|
logger = logging.getLogger(__name__) |
|
|
|
|
|
def conv3x3(in_planes, out_planes, stride=1): |
|
"""3x3 convolution with padding""" |
|
return nn.Conv2d( |
|
in_planes, out_planes, kernel_size=3, stride=stride, |
|
padding=1, bias=False |
|
) |
|
|
|
|
|
class BasicBlock(nn.Module): |
|
expansion = 1 |
|
|
|
def __init__(self, inplanes, planes, stride=1, downsample=None): |
|
super(BasicBlock, self).__init__() |
|
self.conv1 = conv3x3(inplanes, planes, stride) |
|
self.bn1 = nn.BatchNorm2d(planes, momentum=BN_MOMENTUM) |
|
self.relu = nn.ReLU(inplace=True) |
|
self.conv2 = conv3x3(planes, planes) |
|
self.bn2 = nn.BatchNorm2d(planes, momentum=BN_MOMENTUM) |
|
self.downsample = downsample |
|
self.stride = stride |
|
|
|
def forward(self, x): |
|
residual = x |
|
|
|
out = self.conv1(x) |
|
out = self.bn1(out) |
|
out = self.relu(out) |
|
|
|
out = self.conv2(out) |
|
out = self.bn2(out) |
|
|
|
if self.downsample is not None: |
|
residual = self.downsample(x) |
|
|
|
out += residual |
|
out = self.relu(out) |
|
|
|
return out |
|
|
|
|
|
class Bottleneck(nn.Module): |
|
expansion = 4 |
|
|
|
def __init__(self, inplanes, planes, stride=1, downsample=None): |
|
super(Bottleneck, self).__init__() |
|
self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False) |
|
self.bn1 = nn.BatchNorm2d(planes, momentum=BN_MOMENTUM) |
|
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride, |
|
padding=1, bias=False) |
|
self.bn2 = nn.BatchNorm2d(planes, momentum=BN_MOMENTUM) |
|
self.conv3 = nn.Conv2d(planes, planes * self.expansion, kernel_size=1, |
|
bias=False) |
|
self.bn3 = nn.BatchNorm2d(planes * self.expansion, |
|
momentum=BN_MOMENTUM) |
|
self.relu = nn.ReLU(inplace=True) |
|
self.downsample = downsample |
|
self.stride = stride |
|
|
|
def forward(self, x): |
|
residual = x |
|
|
|
out = self.conv1(x) |
|
out = self.bn1(out) |
|
out = self.relu(out) |
|
|
|
out = self.conv2(out) |
|
out = self.bn2(out) |
|
out = self.relu(out) |
|
|
|
out = self.conv3(out) |
|
out = self.bn3(out) |
|
|
|
if self.downsample is not None: |
|
residual = self.downsample(x) |
|
|
|
out += residual |
|
out = self.relu(out) |
|
|
|
return out |
|
|
|
|
|
class PoseResNet(nn.Module): |
|
|
|
def __init__(self, block, layers, cfg, **kwargs): |
|
self.inplanes = 64 |
|
extra = cfg.MODEL.EXTRA |
|
self.deconv_with_bias = extra.DECONV_WITH_BIAS |
|
|
|
super(PoseResNet, self).__init__() |
|
self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, |
|
bias=False) |
|
self.bn1 = nn.BatchNorm2d(64, momentum=BN_MOMENTUM) |
|
self.relu = nn.ReLU(inplace=True) |
|
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) |
|
self.layer1 = self._make_layer(block, 64, layers[0]) |
|
self.layer2 = self._make_layer(block, 128, layers[1], stride=2) |
|
self.layer3 = self._make_layer(block, 256, layers[2], stride=2) |
|
self.layer4 = self._make_layer(block, 512, layers[3], stride=2) |
|
|
|
|
|
self.deconv_layers = self._make_deconv_layer( |
|
extra.NUM_DECONV_LAYERS, |
|
extra.NUM_DECONV_FILTERS, |
|
extra.NUM_DECONV_KERNELS, |
|
) |
|
|
|
self.final_layer = nn.Conv2d( |
|
in_channels=extra.NUM_DECONV_FILTERS[-1], |
|
out_channels=cfg.MODEL.NUM_JOINTS, |
|
kernel_size=extra.FINAL_CONV_KERNEL, |
|
stride=1, |
|
padding=1 if extra.FINAL_CONV_KERNEL == 3 else 0 |
|
) |
|
|
|
def _make_layer(self, block, planes, blocks, stride=1): |
|
downsample = None |
|
if stride != 1 or self.inplanes != planes * block.expansion: |
|
downsample = nn.Sequential( |
|
nn.Conv2d(self.inplanes, planes * block.expansion, |
|
kernel_size=1, stride=stride, bias=False), |
|
nn.BatchNorm2d(planes * block.expansion, momentum=BN_MOMENTUM), |
|
) |
|
|
|
layers = [] |
|
layers.append(block(self.inplanes, planes, stride, downsample)) |
|
self.inplanes = planes * block.expansion |
|
for i in range(1, blocks): |
|
layers.append(block(self.inplanes, planes)) |
|
|
|
return nn.Sequential(*layers) |
|
|
|
def _get_deconv_cfg(self, deconv_kernel, index): |
|
if deconv_kernel == 4: |
|
padding = 1 |
|
output_padding = 0 |
|
elif deconv_kernel == 3: |
|
padding = 1 |
|
output_padding = 1 |
|
elif deconv_kernel == 2: |
|
padding = 0 |
|
output_padding = 0 |
|
|
|
return deconv_kernel, padding, output_padding |
|
|
|
def _make_deconv_layer(self, num_layers, num_filters, num_kernels): |
|
assert num_layers == len(num_filters), \ |
|
'ERROR: num_deconv_layers is different len(num_deconv_filters)' |
|
assert num_layers == len(num_kernels), \ |
|
'ERROR: num_deconv_layers is different len(num_deconv_filters)' |
|
|
|
layers = [] |
|
for i in range(num_layers): |
|
kernel, padding, output_padding = \ |
|
self._get_deconv_cfg(num_kernels[i], i) |
|
|
|
planes = num_filters[i] |
|
layers.append( |
|
nn.ConvTranspose2d( |
|
in_channels=self.inplanes, |
|
out_channels=planes, |
|
kernel_size=kernel, |
|
stride=2, |
|
padding=padding, |
|
output_padding=output_padding, |
|
bias=self.deconv_with_bias)) |
|
layers.append(nn.BatchNorm2d(planes, momentum=BN_MOMENTUM)) |
|
layers.append(nn.ReLU(inplace=True)) |
|
self.inplanes = planes |
|
|
|
return nn.Sequential(*layers) |
|
|
|
def forward(self, x): |
|
x = self.conv1(x) |
|
x = self.bn1(x) |
|
x = self.relu(x) |
|
x = self.maxpool(x) |
|
|
|
x = self.layer1(x) |
|
x = self.layer2(x) |
|
x = self.layer3(x) |
|
x = self.layer4(x) |
|
|
|
x = self.deconv_layers(x) |
|
x = self.final_layer(x) |
|
|
|
return x |
|
|
|
def init_weights(self, pretrained=''): |
|
if os.path.isfile(pretrained): |
|
logger.info('=> init deconv weights from normal distribution') |
|
for name, m in self.deconv_layers.named_modules(): |
|
if isinstance(m, nn.ConvTranspose2d): |
|
logger.info('=> init {}.weight as normal(0, 0.001)'.format(name)) |
|
logger.info('=> init {}.bias as 0'.format(name)) |
|
nn.init.normal_(m.weight, std=0.001) |
|
if self.deconv_with_bias: |
|
nn.init.constant_(m.bias, 0) |
|
elif isinstance(m, nn.BatchNorm2d): |
|
logger.info('=> init {}.weight as 1'.format(name)) |
|
logger.info('=> init {}.bias as 0'.format(name)) |
|
nn.init.constant_(m.weight, 1) |
|
nn.init.constant_(m.bias, 0) |
|
logger.info('=> init final conv weights from normal distribution') |
|
for m in self.final_layer.modules(): |
|
if isinstance(m, nn.Conv2d): |
|
|
|
logger.info('=> init {}.weight as normal(0, 0.001)'.format(name)) |
|
logger.info('=> init {}.bias as 0'.format(name)) |
|
nn.init.normal_(m.weight, std=0.001) |
|
nn.init.constant_(m.bias, 0) |
|
|
|
pretrained_state_dict = torch.load(pretrained) |
|
logger.info('=> loading pretrained model {}'.format(pretrained)) |
|
self.load_state_dict(pretrained_state_dict, strict=False) |
|
else: |
|
logger.info('=> init weights from normal distribution') |
|
for m in self.modules(): |
|
if isinstance(m, nn.Conv2d): |
|
|
|
nn.init.normal_(m.weight, std=0.001) |
|
|
|
elif isinstance(m, nn.BatchNorm2d): |
|
nn.init.constant_(m.weight, 1) |
|
nn.init.constant_(m.bias, 0) |
|
elif isinstance(m, nn.ConvTranspose2d): |
|
nn.init.normal_(m.weight, std=0.001) |
|
if self.deconv_with_bias: |
|
nn.init.constant_(m.bias, 0) |
|
|
|
|
|
resnet_spec = { |
|
18: (BasicBlock, [2, 2, 2, 2]), |
|
34: (BasicBlock, [3, 4, 6, 3]), |
|
50: (Bottleneck, [3, 4, 6, 3]), |
|
101: (Bottleneck, [3, 4, 23, 3]), |
|
152: (Bottleneck, [3, 8, 36, 3]) |
|
} |
|
|
|
|
|
def get_pose_net(cfg, is_train, **kwargs): |
|
num_layers = cfg.MODEL.EXTRA.NUM_LAYERS |
|
|
|
block_class, layers = resnet_spec[num_layers] |
|
|
|
model = PoseResNet(block_class, layers, cfg, **kwargs) |
|
|
|
if is_train and cfg.MODEL.INIT_WEIGHTS: |
|
model.init_weights(cfg.MODEL.PRETRAINED) |
|
|
|
return model |
|
|