|
|
|
|
|
|
|
|
|
|
|
|
|
from __future__ import absolute_import |
|
from __future__ import division |
|
from __future__ import print_function |
|
|
|
import copy |
|
import logging |
|
import random |
|
|
|
import cv2 |
|
import numpy as np |
|
import torch |
|
from torch.utils.data import Dataset |
|
|
|
from utils.transforms import get_affine_transform |
|
from utils.transforms import affine_transform |
|
from utils.transforms import fliplr_joints |
|
|
|
|
|
logger = logging.getLogger(__name__) |
|
|
|
|
|
class JointsDataset(Dataset): |
|
def __init__(self, cfg, root, image_set, is_train, transform=None): |
|
self.num_joints = 0 |
|
self.pixel_std = 200 |
|
self.flip_pairs = [] |
|
self.parent_ids = [] |
|
|
|
self.is_train = is_train |
|
self.root = root |
|
self.image_set = image_set |
|
|
|
self.output_path = cfg.OUTPUT_DIR |
|
self.data_format = cfg.DATASET.DATA_FORMAT |
|
|
|
self.scale_factor = cfg.DATASET.SCALE_FACTOR |
|
self.rotation_factor = cfg.DATASET.ROT_FACTOR |
|
self.flip = cfg.DATASET.FLIP |
|
self.num_joints_half_body = cfg.DATASET.NUM_JOINTS_HALF_BODY |
|
self.prob_half_body = cfg.DATASET.PROB_HALF_BODY |
|
self.color_rgb = cfg.DATASET.COLOR_RGB |
|
|
|
self.target_type = cfg.MODEL.TARGET_TYPE |
|
self.image_size = np.array(cfg.MODEL.IMAGE_SIZE) |
|
self.heatmap_size = np.array(cfg.MODEL.HEATMAP_SIZE) |
|
self.sigma = cfg.MODEL.SIGMA |
|
self.use_different_joints_weight = cfg.LOSS.USE_DIFFERENT_JOINTS_WEIGHT |
|
self.joints_weight = 1 |
|
|
|
self.transform = transform |
|
self.db = [] |
|
|
|
def _get_db(self): |
|
raise NotImplementedError |
|
|
|
def evaluate(self, cfg, preds, output_dir, *args, **kwargs): |
|
raise NotImplementedError |
|
|
|
def half_body_transform(self, joints, joints_vis): |
|
upper_joints = [] |
|
lower_joints = [] |
|
for joint_id in range(self.num_joints): |
|
if joints_vis[joint_id][0] > 0: |
|
if joint_id in self.upper_body_ids: |
|
upper_joints.append(joints[joint_id]) |
|
else: |
|
lower_joints.append(joints[joint_id]) |
|
|
|
if np.random.randn() < 0.5 and len(upper_joints) > 2: |
|
selected_joints = upper_joints |
|
else: |
|
selected_joints = lower_joints \ |
|
if len(lower_joints) > 2 else upper_joints |
|
|
|
if len(selected_joints) < 2: |
|
return None, None |
|
|
|
selected_joints = np.array(selected_joints, dtype=np.float32) |
|
center = selected_joints.mean(axis=0)[:2] |
|
|
|
left_top = np.amin(selected_joints, axis=0) |
|
right_bottom = np.amax(selected_joints, axis=0) |
|
|
|
w = right_bottom[0] - left_top[0] |
|
h = right_bottom[1] - left_top[1] |
|
|
|
if w > self.aspect_ratio * h: |
|
h = w * 1.0 / self.aspect_ratio |
|
elif w < self.aspect_ratio * h: |
|
w = h * self.aspect_ratio |
|
|
|
scale = np.array( |
|
[ |
|
w * 1.0 / self.pixel_std, |
|
h * 1.0 / self.pixel_std |
|
], |
|
dtype=np.float32 |
|
) |
|
|
|
scale = scale * 1.5 |
|
|
|
return center, scale |
|
|
|
def __len__(self,): |
|
return len(self.db) |
|
|
|
def __getitem__(self, idx): |
|
db_rec = copy.deepcopy(self.db[idx]) |
|
|
|
image_file = db_rec['image'] |
|
filename = db_rec['filename'] if 'filename' in db_rec else '' |
|
imgnum = db_rec['imgnum'] if 'imgnum' in db_rec else '' |
|
|
|
if self.data_format == 'zip': |
|
from utils import zipreader |
|
data_numpy = zipreader.imread( |
|
image_file, cv2.IMREAD_COLOR | cv2.IMREAD_IGNORE_ORIENTATION |
|
) |
|
else: |
|
data_numpy = cv2.imread( |
|
image_file, cv2.IMREAD_COLOR | cv2.IMREAD_IGNORE_ORIENTATION |
|
) |
|
|
|
if self.color_rgb: |
|
data_numpy = cv2.cvtColor(data_numpy, cv2.COLOR_BGR2RGB) |
|
|
|
if data_numpy is None: |
|
logger.error('=> fail to read {}'.format(image_file)) |
|
raise ValueError('Fail to read {}'.format(image_file)) |
|
|
|
joints = db_rec['joints_3d'] |
|
joints_vis = db_rec['joints_3d_vis'] |
|
|
|
c = db_rec['center'] |
|
s = db_rec['scale'] |
|
score = db_rec['score'] if 'score' in db_rec else 1 |
|
r = 0 |
|
|
|
if self.is_train: |
|
if (np.sum(joints_vis[:, 0]) > self.num_joints_half_body |
|
and np.random.rand() < self.prob_half_body): |
|
c_half_body, s_half_body = self.half_body_transform( |
|
joints, joints_vis |
|
) |
|
|
|
if c_half_body is not None and s_half_body is not None: |
|
c, s = c_half_body, s_half_body |
|
|
|
sf = self.scale_factor |
|
rf = self.rotation_factor |
|
s = s * np.clip(np.random.randn()*sf + 1, 1 - sf, 1 + sf) |
|
r = np.clip(np.random.randn()*rf, -rf*2, rf*2) \ |
|
if random.random() <= 0.6 else 0 |
|
|
|
if self.flip and random.random() <= 0.5: |
|
data_numpy = data_numpy[:, ::-1, :] |
|
joints, joints_vis = fliplr_joints( |
|
joints, joints_vis, data_numpy.shape[1], self.flip_pairs) |
|
c[0] = data_numpy.shape[1] - c[0] - 1 |
|
|
|
trans = get_affine_transform(c, s, r, self.image_size) |
|
input = cv2.warpAffine( |
|
data_numpy, |
|
trans, |
|
(int(self.image_size[0]), int(self.image_size[1])), |
|
flags=cv2.INTER_LINEAR) |
|
|
|
if self.transform: |
|
input = self.transform(input) |
|
|
|
for i in range(self.num_joints): |
|
if joints_vis[i, 0] > 0.0: |
|
joints[i, 0:2] = affine_transform(joints[i, 0:2], trans) |
|
|
|
target, target_weight = self.generate_target(joints, joints_vis) |
|
|
|
target = torch.from_numpy(target) |
|
target_weight = torch.from_numpy(target_weight) |
|
|
|
meta = { |
|
'image': image_file, |
|
'filename': filename, |
|
'imgnum': imgnum, |
|
'joints': joints, |
|
'joints_vis': joints_vis, |
|
'center': c, |
|
'scale': s, |
|
'rotation': r, |
|
'score': score |
|
} |
|
|
|
return input, target, target_weight, meta |
|
|
|
def select_data(self, db): |
|
db_selected = [] |
|
for rec in db: |
|
num_vis = 0 |
|
joints_x = 0.0 |
|
joints_y = 0.0 |
|
for joint, joint_vis in zip( |
|
rec['joints_3d'], rec['joints_3d_vis']): |
|
if joint_vis[0] <= 0: |
|
continue |
|
num_vis += 1 |
|
|
|
joints_x += joint[0] |
|
joints_y += joint[1] |
|
if num_vis == 0: |
|
continue |
|
|
|
joints_x, joints_y = joints_x / num_vis, joints_y / num_vis |
|
|
|
area = rec['scale'][0] * rec['scale'][1] * (self.pixel_std**2) |
|
joints_center = np.array([joints_x, joints_y]) |
|
bbox_center = np.array(rec['center']) |
|
diff_norm2 = np.linalg.norm((joints_center-bbox_center), 2) |
|
ks = np.exp(-1.0*(diff_norm2**2) / ((0.2)**2*2.0*area)) |
|
|
|
metric = (0.2 / 16) * num_vis + 0.45 - 0.2 / 16 |
|
if ks > metric: |
|
db_selected.append(rec) |
|
|
|
logger.info('=> num db: {}'.format(len(db))) |
|
logger.info('=> num selected db: {}'.format(len(db_selected))) |
|
return db_selected |
|
|
|
def generate_target(self, joints, joints_vis): |
|
''' |
|
:param joints: [num_joints, 3] |
|
:param joints_vis: [num_joints, 3] |
|
:return: target, target_weight(1: visible, 0: invisible) |
|
''' |
|
target_weight = np.ones((self.num_joints, 1), dtype=np.float32) |
|
target_weight[:, 0] = joints_vis[:, 0] |
|
|
|
assert self.target_type == 'gaussian', \ |
|
'Only support gaussian map now!' |
|
|
|
if self.target_type == 'gaussian': |
|
target = np.zeros((self.num_joints, |
|
self.heatmap_size[1], |
|
self.heatmap_size[0]), |
|
dtype=np.float32) |
|
|
|
tmp_size = self.sigma * 3 |
|
|
|
for joint_id in range(self.num_joints): |
|
feat_stride = self.image_size / self.heatmap_size |
|
mu_x = int(joints[joint_id][0] / feat_stride[0] + 0.5) |
|
mu_y = int(joints[joint_id][1] / feat_stride[1] + 0.5) |
|
|
|
ul = [int(mu_x - tmp_size), int(mu_y - tmp_size)] |
|
br = [int(mu_x + tmp_size + 1), int(mu_y + tmp_size + 1)] |
|
if ul[0] >= self.heatmap_size[0] or ul[1] >= self.heatmap_size[1] \ |
|
or br[0] < 0 or br[1] < 0: |
|
|
|
target_weight[joint_id] = 0 |
|
continue |
|
|
|
|
|
size = 2 * tmp_size + 1 |
|
x = np.arange(0, size, 1, np.float32) |
|
y = x[:, np.newaxis] |
|
x0 = y0 = size // 2 |
|
|
|
g = np.exp(- ((x - x0) ** 2 + (y - y0) ** 2) / (2 * self.sigma ** 2)) |
|
|
|
|
|
g_x = max(0, -ul[0]), min(br[0], self.heatmap_size[0]) - ul[0] |
|
g_y = max(0, -ul[1]), min(br[1], self.heatmap_size[1]) - ul[1] |
|
|
|
img_x = max(0, ul[0]), min(br[0], self.heatmap_size[0]) |
|
img_y = max(0, ul[1]), min(br[1], self.heatmap_size[1]) |
|
|
|
v = target_weight[joint_id] |
|
if v > 0.5: |
|
target[joint_id][img_y[0]:img_y[1], img_x[0]:img_x[1]] = \ |
|
g[g_y[0]:g_y[1], g_x[0]:g_x[1]] |
|
|
|
if self.use_different_joints_weight: |
|
target_weight = np.multiply(target_weight, self.joints_weight) |
|
|
|
return target, target_weight |
|
|