NSAQA / detectron2 /configs /common /models /mask_rcnn_vitdet.py
laurenok24's picture
Upload 715 files
07d7c23 verified
raw
history blame
1.64 kB
from functools import partial
import torch.nn as nn
from detectron2.config import LazyCall as L
from detectron2.modeling import ViT, SimpleFeaturePyramid
from detectron2.modeling.backbone.fpn import LastLevelMaxPool
from .mask_rcnn_fpn import model
from ..data.constants import constants
model.pixel_mean = constants.imagenet_rgb256_mean
model.pixel_std = constants.imagenet_rgb256_std
model.input_format = "RGB"
# Base
embed_dim, depth, num_heads, dp = 768, 12, 12, 0.1
# Creates Simple Feature Pyramid from ViT backbone
model.backbone = L(SimpleFeaturePyramid)(
net=L(ViT)( # Single-scale ViT backbone
img_size=1024,
patch_size=16,
embed_dim=embed_dim,
depth=depth,
num_heads=num_heads,
drop_path_rate=dp,
window_size=14,
mlp_ratio=4,
qkv_bias=True,
norm_layer=partial(nn.LayerNorm, eps=1e-6),
window_block_indexes=[
# 2, 5, 8 11 for global attention
0,
1,
3,
4,
6,
7,
9,
10,
],
residual_block_indexes=[],
use_rel_pos=True,
out_feature="last_feat",
),
in_feature="${.net.out_feature}",
out_channels=256,
scale_factors=(4.0, 2.0, 1.0, 0.5),
top_block=L(LastLevelMaxPool)(),
norm="LN",
square_pad=1024,
)
model.roi_heads.box_head.conv_norm = model.roi_heads.mask_head.conv_norm = "LN"
# 2conv in RPN:
model.proposal_generator.head.conv_dims = [-1, -1]
# 4conv1fc box head
model.roi_heads.box_head.conv_dims = [256, 256, 256, 256]
model.roi_heads.box_head.fc_dims = [1024]