Spaces:
Sleeping
Sleeping
# | |
# Copyright (c) 2019 Idiap Research Institute, http://www.idiap.ch/ | |
# Written by Suraj Srinivas <suraj.srinivas@idiap.ch> | |
# | |
""" Misc helper functions """ | |
import cv2 | |
import numpy as np | |
import subprocess | |
import torch | |
import torchvision.transforms as transforms | |
class NormalizeInverse(transforms.Normalize): | |
# Undo normalization on images | |
def __init__(self, mean, std): | |
mean = torch.as_tensor(mean) | |
std = torch.as_tensor(std) | |
std_inv = 1 / (std + 1e-7) | |
mean_inv = -mean * std_inv | |
super(NormalizeInverse, self).__init__(mean=mean_inv, std=std_inv) | |
def __call__(self, tensor): | |
return super(NormalizeInverse, self).__call__(tensor.clone()) | |
def create_folder(folder_name): | |
try: | |
subprocess.call(['mkdir', '-p', folder_name]) | |
except OSError: | |
None | |
def save_saliency_map(image, saliency_map, filename): | |
""" | |
Save saliency map on image. | |
Args: | |
image: Tensor of size (3,H,W) | |
saliency_map: Tensor of size (1,H,W) | |
filename: string with complete path and file extension | |
""" | |
image = image.data.cpu().numpy() | |
saliency_map = saliency_map.data.cpu().numpy() | |
saliency_map = saliency_map - saliency_map.min() | |
saliency_map = saliency_map / saliency_map.max() | |
saliency_map = saliency_map.clip(0, 1) | |
saliency_map = np.uint8(saliency_map * 255).transpose(1, 2, 0) | |
saliency_map = cv2.resize(saliency_map, (224, 224)) | |
image = np.uint8(image * 255).transpose(1, 2, 0) | |
image = cv2.resize(image, (224, 224)) | |
# Apply JET colormap | |
color_heatmap = cv2.applyColorMap(saliency_map, cv2.COLORMAP_JET) | |
# Combine image with heatmap | |
img_with_heatmap = np.float32(color_heatmap) + np.float32(image) | |
img_with_heatmap = img_with_heatmap / np.max(img_with_heatmap) | |
cv2.imwrite(filename, np.uint8(255 * img_with_heatmap)) | |