Spaces:
Running
on
Zero
Running
on
Zero
try
Browse files
gradio_app/custom_models/mvimg_prediction.py
CHANGED
@@ -13,9 +13,9 @@ training_config = "gradio_app/custom_models/image2mvimage.yaml"
|
|
13 |
checkpoint_path = "ckpt/img2mvimg/unet_state_dict.pth"
|
14 |
|
15 |
trainer, pipeline = load_pipeline(training_config, checkpoint_path)
|
16 |
-
pipeline.enable_model_cpu_offload()
|
17 |
|
18 |
def predict(img_list: List[Image.Image], guidance_scale=2., **kwargs):
|
|
|
19 |
if isinstance(img_list, Image.Image):
|
20 |
img_list = [img_list]
|
21 |
img_list = [rgba_to_rgb(i) if i.mode == 'RGBA' else i for i in img_list]
|
|
|
13 |
checkpoint_path = "ckpt/img2mvimg/unet_state_dict.pth"
|
14 |
|
15 |
trainer, pipeline = load_pipeline(training_config, checkpoint_path)
|
|
|
16 |
|
17 |
def predict(img_list: List[Image.Image], guidance_scale=2., **kwargs):
|
18 |
+
pipeline.enable_model_cpu_offload()
|
19 |
if isinstance(img_list, Image.Image):
|
20 |
img_list = [img_list]
|
21 |
img_list = [rgba_to_rgb(i) if i.mode == 'RGBA' else i for i in img_list]
|