Spaces:
Running
on
Zero
Running
on
Zero
from dataclasses import dataclass, field | |
from typing import List, Optional | |
class TrainerSubConfig: | |
trainer_type: str = "" | |
trainer: dict = field(default_factory=dict) | |
class ExprimentConfig: | |
trainers: List[dict] = field(default_factory=lambda: []) | |
init_config: dict = field(default_factory=dict) | |
pretrained_model_name_or_path: str = "" | |
pretrained_unet_state_dict_path: str = "" | |
# expriments related parameters | |
linear_beta_schedule: bool = False | |
zero_snr: bool = False | |
prediction_type: Optional[str] = None | |
seed: Optional[int] = None | |
max_train_steps: int = 1000000 | |
gradient_accumulation_steps: int = 1 | |
learning_rate: float = 1e-4 | |
lr_scheduler: str = "constant" | |
lr_warmup_steps: int = 500 | |
use_8bit_adam: bool = False | |
adam_beta1: float = 0.9 | |
adam_beta2: float = 0.999 | |
adam_weight_decay: float = 1e-2 | |
adam_epsilon: float = 1e-08 | |
max_grad_norm: float = 1.0 | |
mixed_precision: Optional[str] = None # ["no", "fp16", "bf16", "fp8"] | |
skip_training: bool = False | |
debug: bool = False |