Spaces:
Sleeping
Sleeping
from torch import nn | |
class ZeroTemporalPad(nn.Module): | |
"""Pad sequences to equal lentgh in the temporal dimension""" | |
def __init__(self, kernel_size, dilation): | |
super().__init__() | |
total_pad = dilation * (kernel_size - 1) | |
begin = total_pad // 2 | |
end = total_pad - begin | |
self.pad_layer = nn.ZeroPad2d((0, 0, begin, end)) | |
def forward(self, x): | |
return self.pad_layer(x) | |
class Conv1dBN(nn.Module): | |
"""1d convolutional with batch norm. | |
conv1d -> relu -> BN blocks. | |
Note: | |
Batch normalization is applied after ReLU regarding the original implementation. | |
Args: | |
in_channels (int): number of input channels. | |
out_channels (int): number of output channels. | |
kernel_size (int): kernel size for convolutional filters. | |
dilation (int): dilation for convolution layers. | |
""" | |
def __init__(self, in_channels, out_channels, kernel_size, dilation): | |
super().__init__() | |
padding = dilation * (kernel_size - 1) | |
pad_s = padding // 2 | |
pad_e = padding - pad_s | |
self.conv1d = nn.Conv1d(in_channels, out_channels, kernel_size, dilation=dilation) | |
self.pad = nn.ZeroPad2d((pad_s, pad_e, 0, 0)) # uneven left and right padding | |
self.norm = nn.BatchNorm1d(out_channels) | |
def forward(self, x): | |
o = self.conv1d(x) | |
o = self.pad(o) | |
o = nn.functional.relu(o) | |
o = self.norm(o) | |
return o | |
class Conv1dBNBlock(nn.Module): | |
"""1d convolutional block with batch norm. It is a set of conv1d -> relu -> BN blocks. | |
Args: | |
in_channels (int): number of input channels. | |
out_channels (int): number of output channels. | |
hidden_channels (int): number of inner convolution channels. | |
kernel_size (int): kernel size for convolutional filters. | |
dilation (int): dilation for convolution layers. | |
num_conv_blocks (int, optional): number of convolutional blocks. Defaults to 2. | |
""" | |
def __init__(self, in_channels, out_channels, hidden_channels, kernel_size, dilation, num_conv_blocks=2): | |
super().__init__() | |
self.conv_bn_blocks = [] | |
for idx in range(num_conv_blocks): | |
layer = Conv1dBN( | |
in_channels if idx == 0 else hidden_channels, | |
out_channels if idx == (num_conv_blocks - 1) else hidden_channels, | |
kernel_size, | |
dilation, | |
) | |
self.conv_bn_blocks.append(layer) | |
self.conv_bn_blocks = nn.Sequential(*self.conv_bn_blocks) | |
def forward(self, x): | |
""" | |
Shapes: | |
x: (B, D, T) | |
""" | |
return self.conv_bn_blocks(x) | |
class ResidualConv1dBNBlock(nn.Module): | |
"""Residual Convolutional Blocks with BN | |
Each block has 'num_conv_block' conv layers and 'num_res_blocks' such blocks are connected | |
with residual connections. | |
conv_block = (conv1d -> relu -> bn) x 'num_conv_blocks' | |
residuak_conv_block = (x -> conv_block -> + ->) x 'num_res_blocks' | |
' - - - - - - - - - ^ | |
Args: | |
in_channels (int): number of input channels. | |
out_channels (int): number of output channels. | |
hidden_channels (int): number of inner convolution channels. | |
kernel_size (int): kernel size for convolutional filters. | |
dilations (list): dilations for each convolution layer. | |
num_res_blocks (int, optional): number of residual blocks. Defaults to 13. | |
num_conv_blocks (int, optional): number of convolutional blocks in each residual block. Defaults to 2. | |
""" | |
def __init__( | |
self, in_channels, out_channels, hidden_channels, kernel_size, dilations, num_res_blocks=13, num_conv_blocks=2 | |
): | |
super().__init__() | |
assert len(dilations) == num_res_blocks | |
self.res_blocks = nn.ModuleList() | |
for idx, dilation in enumerate(dilations): | |
block = Conv1dBNBlock( | |
in_channels if idx == 0 else hidden_channels, | |
out_channels if (idx + 1) == len(dilations) else hidden_channels, | |
hidden_channels, | |
kernel_size, | |
dilation, | |
num_conv_blocks, | |
) | |
self.res_blocks.append(block) | |
def forward(self, x, x_mask=None): | |
if x_mask is None: | |
x_mask = 1.0 | |
o = x * x_mask | |
for block in self.res_blocks: | |
res = o | |
o = block(o) | |
o = o + res | |
if x_mask is not None: | |
o = o * x_mask | |
return o | |